java源码 -- LinkedHashMap

一、概述

  LinkedHashMap 继承自 HashMap,在 HashMap 基础上,通过维护一条双向链表,解决了 HashMap 不能随时保持遍历顺序和插入顺序一致的问题。

  除此之外,LinkedHashMap 对访问顺序也提供了相关支持。在一些场景下,该特性很有用,比如缓存。

  在实现上,LinkedHashMap 很多方法直接继承自 HashMap,仅为维护双向链表覆写了部分方法。


本文重点放在双向链表的维护上:包括链表的建立过程,删除节点的过程,以及访问顺序维护的过程等

Entry

    static class Entry<K,V> extends HashMap.Node<K,V> {
        Entry<K,V> before, after;
        Entry(int hash, K key, V value, Node<K,V> next) {
            super(hash, key, value, next);
        }
    }

  beforeafter 提供了一种视图,从该角度看是一个所有节点按插入顺序排列的双向链表

  之前在分析HashMap的红黑树相关操作时说过,每个table[ i ] 位置处的链/树按 next 看则是一个普通的单向链表,按left,right,parent看则是一个二叉树(还有一个prev 与 next 构成双向链,目的是便于链节点的删除操作),

  而 LinkedHashMap 继承自HashMap 所以对于它来说同时存在三种视图角度。
  

 

 

LinkedHashMap将具体操作都交给了HashMap,二者直接究竟是如何配合的?

  这涉及到LinkedHashMap如何利用HashMap来实现自己的功能,是这样的,在HashMap插入删除等操作后会调用钩子方法(afterNodeAccess, afterNodeInsertion, afterNodeRemoval),而这些方法的实现就在LinkedHashMap中,这些方法的目的就是操作 before 和 after 指针。

  LinkedHashMap 重写newNodenewTreeNode 方法,这两个方法是在插入时HashMap构建新节点时调用的,对于重写后的newNode 先是创建LinkedHashMap#Entry节点,之后将其加到 before/after 链的尾部

  对于重写后的newTreeNode 是创建HashMapTreeNode节点,因为其继承自LinkedHashMap#Entry,所以含有before/after 指针,之后同样加入到链尾


  上面的继承体系乍一看还是有点复杂的,同时也有点让人迷惑。HashMap 的内部类 TreeNode 不继承它的了一个内部类 Node,却继承自 Node 的子类 LinkedHashMap 内部类 Entry。这里这样做是有一定原因的,这里先不说。

  先来简单说明一下上面的继承体系。

  LinkedHashMap 内部类 Entry 继承自 HashMap 内部类 Node,并新增两个引用,分别是 before 和 after。这两个引用的用途不难理解,也就是用于维护双向链表。同时,TreeNode 继承 LinkedHashMap内部类 Entry 后,就具备了和其他 Entry 一起组成链表的能力。

  但是这里需要大家考虑一个问题。当我们使用 HashMap 时,TreeNode不需要具备组成链表能力。如果继承 LinkedHashMap 内部类 Entry ,TreeNode 就多了两个用不到的引用,这样做不是会浪费空间吗?简单说明一下这个问题(水平有限,不保证完全正确),这里这么做确实会浪费空间,但与 TreeNode 通过继承获取的组成链表的能力相比这点浪费是值得的。在 HashMap 的设计思路注释中,有这样一段话:

Because TreeNodes are about twice the size of regular nodes, we 
use them only when bins contain enough nodes to warrant use
(see TREEIFY_THRESHOLD). And when they become too small (due to
removal or resizing) they are converted back to plain bins. In
usages with well-distributed user hashCodes, tree bins are
rarely used.

  大致的意思是 TreeNode 对象的大小约是普通 Node 对象的2倍,我们仅在桶(bin)中包含足够多的节点时再使用。当桶中的节点数量变少时(取决于删除和扩容),TreeNode 会被转成 Node。当用户实现的 hashCode 方法具有良好分布性时树类型的桶将会很少被使用

  通过上面的注释,我们可以了解到。一般情况下,只要 hashCode 的实现不糟糕,Node 组成的链表很少会被转成由 TreeNode 组成的红黑树。也就是说 TreeNode 使用的并不多,浪费那点空间是可接受的。假如 TreeNode 机制继承自 Node 类,那么它要想具备组成链表的能力,就需要 Node 去继承 LinkedHashMap 的内部类 Entry。这个时候就得不偿失了,浪费很多空间去获取不一定用得到的能力。

  说到这里,大家应该能明白节点类型的继承体系了。

 

 

 二、源码

 属性

//头节点
transient LinkedHashMap.Entry<K,V> head;
//尾节点
transient LinkedHashMap.Entry<K,V> tail;
//true代表哈希映射顺序;false代表插入顺序
final boolean accessOrder;

 

 构造器

public LinkedHashMap(int initialCapacity, float loadFactor) {
        super(initialCapacity, loadFactor);
        accessOrder = false;
    }
public LinkedHashMap(int initialCapacity) {
        super(initialCapacity);
        accessOrder = false;
    }
public LinkedHashMap() {
        super();
        accessOrder = false;
    }
 public LinkedHashMap(Map<? extends K, ? extends V> m) {
        super();
        accessOrder = false;
        putMapEntries(m, false);
    }
public LinkedHashMap(int initialCapacity,
                         float loadFactor,
                         boolean accessOrder) {
        super(initialCapacity, loadFactor);
        this.accessOrder = accessOrder;
    }

  可以看到前四个构造器accessOrder都为false,也就是保持插入顺序;最后一个提供了设置accessOrder值的机会。

  LinkedHashMap的构造函数就是调用HashMap的,再加上accessOrder的设置。head 是最早插入的或是最久未被操作的节点,tail 与其相反。

插入操作

  LinkedHashMap并没有put方法,插入操作交给了HashMap,通过重写newNode/newTreeNode方法来创建自己的节点,并对before与after进行操作

 

这个几个方法在HashMap中的作用如下:

 

  newNode方法:插入元素时,构造一个新的单向链表的Node

 

  replacementNode方法: 当由红黑树转换成单向链表时,将原来的TreeNode转换成单向链表Node

 

  newTreeNode方法: 插入元素时,构造一个红黑树节点元素TreeNode

 

  replacementTreeNode方法:当单向链表转换为红黑树时,将原来的单向链表Node转换为TreeNode

 

//在每次构建新节点时,通过linkNodeLast(p);将新节点链接在内部双向链表的尾部。
//在构建新节点时,构建的是`LinkedHashMap.Entry` 不再是`Node`.
    Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
        LinkedHashMap.Entry<K,V> p =
            new LinkedHashMap.Entry<K,V>(hash, key, value, e);
        linkNodeLast(p);
        return p;
    }
  TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
        TreeNode<K,V> p = new TreeNode<K,V>(hash, key, value, next);
        linkNodeLast(p);
        return p;
    }
    //将新增的节点,连接在链表的尾部
    private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
        LinkedHashMap.Entry<K,V> last = tail;
        tail = p;
        //集合之前是空的
        if (last == null)
            head = p;
        else {//将新节点连接在链表的尾部
            p.before = last;
            last.after = p;
        }
    }

 

 

 

 Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
        LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
        LinkedHashMap.Entry<K,V> t =
            new LinkedHashMap.Entry<K,V>(q.hash, q.key, q.value, next);
        transferLinks(q, t);
        return t;
    }
 TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
        LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
        TreeNode<K,V> t = new TreeNode<K,V>(q.hash, q.key, q.value, next);
        transferLinks(q, t);
        return t;
    }
// 连接两个节点之间的前后指针
private void transferLinks(LinkedHashMap.Entry<K,V> src,
                           LinkedHashMap.Entry<K,V> dst) {
  LinkedHashMap.Entry<K,V> b = dst.before = src.before;
  LinkedHashMap.Entry<K,V> a = dst.after = src.after;
  if (b == null)
    head = dst;
  else
    b.after = dst;
  if (a == null)
    tail = dst;
  else
    a.before = dst;
}

 

按访问顺序迭代

 

为了让元素按访问顺序排列,HashMap 定义了以下 Hook 方法,供 LinkedHashMap 实现:

 

  void afterNodeAccess(Node<K,V> p) { }
  void afterNodeInsertion(boolean evict) { }
  void afterNodeRemoval(Node<K,V> p) { }

各个方法实现的原理如下:

  afterNodeAccess 的原理是:访问的元素如果不是尾节点,那么就把它与尾节点交换,所以随着元素的访问,访问次数越多的元素越靠后
  afterNodeRemoval 这个没有特殊操作,正常的断开链条
  afterNodeInsertion 的原理是:元素插入后,可能会删除最旧的、访问次数最少的元素,也就是头节点

 

//从链式关系中删除节点e
    void afterNodeRemoval(Node<K,V> e) { // unlink
        LinkedHashMap.Entry<K,V> p =
            (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
        p.before = p.after = null;
        //该元素是头元素
        if (b == null)
            head = a;
        else
            b.after = a;
        //该元素是尾元素
        if (a == null)
            tail = b;
        else
            a.before = b;
    }
 
    //按需删除最早插入的一个元素
    void afterNodeInsertion(boolean evict) { // possibly remove eldest
        LinkedHashMap.Entry<K,V> first;
        //removeEldestEntry默认返回false,可以被子类改写,如果实现LRU Cache,可以返回true
        //把最老的没有被访问的元素移除掉
        if (evict && (first = head) != null && removeEldestEntry(first)) {
            K key = first.key;
            removeNode(hash(key), key, null, false, true);
        }
    }
 
    //通过afterNodeAccess方法维护访问顺序,每次访问该元素就将该元素移动到双向链表的末尾
    void afterNodeAccess(Node<K,V> e) { // move node to last
        LinkedHashMap.Entry<K,V> last;
        //如果是按照访问元素顺序遍历,将该元素移到到最后一个,注意要求该元素不能是最后一个元素
        if (accessOrder && (last = tail) != e) {
            LinkedHashMap.Entry<K,V> p =
                (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
            p.after = null;
            //该元素为头元素
            if (b == null)
                head = a;
            else
                b.after = a;
            //该元素不是尾元素
            if (a != null)
                a.before = b;
            else
                last = b;
            //如果没有尾元素
            if (last == null)
                head = p;
            else {
                //将p放在last的后面
                p.before = last;
                last.after = p;
            }
            tail = p;
            //注意此时modCount会自增
            ++modCount;
        }
    }

对HashIterator的改写保证迭代顺序为双向链表的顺序:

abstract class LinkedHashIterator {
        LinkedHashMap.Entry<K,V> next;
        LinkedHashMap.Entry<K,V> current;
        int expectedModCount;
 
        LinkedHashIterator() {
            //从双向链表的头元素开始遍历
            next = head;
            expectedModCount = modCount;
            current = null;
        }
 
        public final boolean hasNext() {
            return next != null;
        }
 
        final LinkedHashMap.Entry<K,V> nextNode() {
            LinkedHashMap.Entry<K,V> e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            //按照双向链表而不是哈希数组的顺序遍历
            current = e;
            next = e.after;
            return e;
        }
 
        public final void remove() {
            Node<K,V> p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }
// key键迭代
final class LinkedKeyIterator extends LinkedHashIterator
        implements Iterator<K> {
        public final K next() { return nextNode().getKey(); }
    }
//value值迭代
    final class LinkedValueIterator extends LinkedHashIterator
        implements Iterator<V> {
        public final V next() { return nextNode().value; }
    }
//节点迭代
    final class LinkedEntryIterator extends LinkedHashIterator
        implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }

 

键集合、值集合、节点集合

//键集合
public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new LinkedKeySet();
            keySet = ks;
        }
        return ks;
    }
   //封装一个LinkedKeySet集合
    final class LinkedKeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        public final void clear()               { LinkedHashMap.this.clear(); }
        public final Iterator<K> iterator() {
            return new LinkedKeyIterator();
        }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
        public final Spliterator<K> spliterator()  {
            return Spliterators.spliterator(this, Spliterator.SIZED |
                                            Spliterator.ORDERED |
                                            Spliterator.DISTINCT);
        }
        public final void forEach(Consumer<? super K> action) {
            if (action == null)
                throw new NullPointerException();
            int mc = modCount;
            for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
                action.accept(e.key);
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

 

//值集合
public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new LinkedValues();
            values = vs;
        }
        return vs;
    }
  //封装成一个LinkedValues 集合
    final class LinkedValues extends AbstractCollection<V> {
        public final int size()                 { return size; }
        public final void clear()               { LinkedHashMap.this.clear(); }
        public final Iterator<V> iterator() {
            return new LinkedValueIterator();
        }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator<V> spliterator() {
            return Spliterators.spliterator(this, Spliterator.SIZED |
                                            Spliterator.ORDERED);
        }
        public final void forEach(Consumer<? super V> action) {
            if (action == null)
                throw new NullPointerException();
            int mc = modCount;
            for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
                action.accept(e.value);
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

 

//节点集合
public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new LinkedEntrySet()) : es;
    }
   //封装为一个节点集合
    final class LinkedEntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final int size()                 { return size; }
        public final void clear()               { LinkedHashMap.this.clear(); }
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new LinkedEntryIterator();
        }
        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
            Object key = e.getKey();
            Node<K,V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator<Map.Entry<K,V>> spliterator() {
            return Spliterators.spliterator(this, Spliterator.SIZED |
                                            Spliterator.ORDERED |
                                            Spliterator.DISTINCT);
        }
        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
            if (action == null)
                throw new NullPointerException();
            int mc = modCount;
            for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
                action.accept(e);
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

 

总结

LinkedHashMap 代码比较简单,难的都被 HashMap 实现了:),它们的异同点分别如下:

  • 底层都是数组+链表+红黑树(废话)
  • 迭代器都是快速失败的,都是非线程安全
  • LinkedHashMap 有按插入和访问两种迭代顺序,而HashMap 乱序,迭代顺序不可预测

看这个类的源码,最主要的还是看 HashMap 定义 Hook 方法,使得 LinkedHashMap 保持有序的机制相对独立的设计,这是模板模式的应用

LinkedHashMap相对于HashMap的源码比,是很简单的。因为大树底下好乘凉。它继承了HashMap,仅重写了几个方法,以改变它迭代遍历时的顺序。这也是其与HashMap相比最大的不同。
每次插入数据,或者访问、修改数据时,会增加节点、或调整链表的节点顺序。以决定迭代时输出的顺序。

  • accessOrder ,默认是false,则迭代时输出的顺序是插入节点的顺序。若为true,则输出的顺序是按照访问节点的顺序。为true时,可以在这基础之上构建一个LruCache.
  • LinkedHashMap并没有重写任何put方法。但是其重写了构建新节点的newNode()方法.在每次构建新节点时,将新节点链接在内部双向链表的尾部
  • accessOrder=true的模式下,在afterNodeAccess()函数中,会将当前被访问到的节点e,移动至内部双向链表尾部值得注意的是,afterNodeAccess()函数中,会修改modCount,因此当你正在accessOrder=true的模式下,迭代LinkedHashMap时,如果同时查询访问数据,也会导致fail-fast,因为迭代的顺序已经改变。
  • nextNode() 就是迭代器里的next()方法 。该方法的实现可以看出,迭代LinkedHashMap,就是从内部维护的双链表的表头开始循环输出。 而双链表节点的顺序在LinkedHashMap的增、删、改、查时都会更新。以满足按照插入顺序输出,还是访问顺序输出。
  • 它与HashMap比,还有一个小小的优化,重写了containsValue()方法,直接遍历内部链表去比对value值是否相等

 

posted @ 2019-11-26 22:12  王大军  阅读(146)  评论(0编辑  收藏  举报