数据结构 -- 队列Queue

一、队列简介

定义

队列(queue)在计算机科学中,是一种先进先出的线性表。 它只允许在表的前端进行删除操作,而在表的后端进行插入操作。进行插入操作的端称为队尾,进行删除操作的端称为队头。队列中没有元素时,称为空队列。

1. 队列是一种线性结构;
2. 相比数组,队列对应操作的是数组的子集;
3. 只能从一端(队尾)添加元素,只能从另一端(队首)取出元素 。先进先出的数据结构(先到先得First In First Out【FIFO】)。

 二、代码实现

1. 队列接口

public interface Queue{
    int getSize(); //返回元素的个数
    E getFront(); //返回队首元素内容
    boolean isEmpty(); //判断是否为空
    void enqueue(E e); // 入队
    E dequeue(); //出队
}

 2、循环队列

循环队列中有两个新词,两个指针

  • front 指向队列的第一个元素,初始指向0
  • tail 指向队列的最后一个元素的后一个位置,初始指向0
  • 循环队列就是将队列存储空间的最后一个位置绕到第一个位置,形成逻辑上的环状空间,供队列循环使用。在循环队列结构中,当存储空间的最后一个位置已被使用而再要进入队运算时,只需要存储空间的第一个位置空闲,便可将元素加入到第一个位置,即将存储空间的第一个位置作为队尾。 [1]  循环队列可以更简单防止伪溢出的发生,但队列大小是固定的。
public class LoopQueue<E> implements Queue<E> {

    private E[] data;
    //指向队列的第一个元素,初始指向0
    private int front;
    //指向队列的最后一个元素的后一个位置,初始指向0
    private int tail;
    //元素数量
    private int size;

    public LoopQueue(int capacity){
        data = (E[]) new Object[capacity + 1];
        front = 0;
        tail = 0;
        size = 0;
    }
    public LoopQueue(){
        this(10);
    }

    @Override
    public int getSize() {
        return size;
    }
    /**
     * 因为容量放的时候多了个1,所以get容量的时候,需要减1
     * @return
     */
    public int getCapacity(){
        return data.length - 1;
    }
    /**
     * 当front和tail的值相等时,队列为空,初始两个指向的是同一个值(只有初始的时候,指向的是同一个地方)
     * @return
     */
    @Override
    public boolean isEmpty() {
        return front == tail;
    }
    /**
     * 1.if((tail + 1) % data.length == front) 如果tail + 1 超过了data.length的大小,
     *   代表当前tail指向已经超出了容量的大小,因为是循环式,所以需要tail去循环头元素中查看值是否有被占用,
     *   如果 == front 代表循环头没有,就需要扩容了。
     * 2.举例: 元素容量为8,tail目前指向7 front 指向2
     *         if((7 + 1) % 8 == 2 )  if(0 == 2) 这里是false,因为front指向了2,所以代表 第0,1位是没有值的
     *         所以这个值需要在在第0位放(空间利用)
     * 3.data[tail] = param  tail当前指向的地方需要赋值,然后tail自增 循环体 的1,size+1
     * @param param
     */
    @Override
    public void enqueue( E param) {
        if ((tail + 1) % data.length == front) {
            resize(getCapacity() * 2);
        }
        data[tail] = param;
        tail = (tail + 1) % data.length;
        size++;
    }
    /**
     * 1.如果队列为空抛出异常
     * 2.用ret变量来接受当前队列头的值
     * 3.接收成功之后将,队列头元素置空
     * 4.front指针指向下一个元素
     * 5.size大小-1
     * 6.如果size大小占据了容量的1/4和size为容量的1/2且不等于0的时候,对容量进行缩减,缩减为原来容量的1/2
     * 7.返回ret变量
     * @return
     */
    @Override
    public E dequeue() {
        if(isEmpty()){
            throw new IllegalArgumentException("Cannot dequeue from an empty queue");
        }
        E ret = data[front];
        data[front] = null;
        front = (front + 1) % data.length;
        size --;
        if (size == getCapacity() / 4 && getCapacity() / 2 != 0){
            resize(getCapacity()/2);
        }
        return ret;
    }

    @Override
    public E getFront() {
        if (isEmpty())
            throw new IllegalArgumentException("Queue is empty");
        return data[front];
    }
    /**
     * 扩充队列的容量
     * 1.front代表了当前元素初始位置的指向
     * 2.newData的第i位元素,应该等于 i + front % data.length 的值
     * 3.举例:元素容量20,i 等于 0 ,front 等于 2,结果: newData[0] = data[(0 + 2) %  20]
     *         = data[2]   意思就是,newData的第一位元素,应该等于data有值的第一位元素
     *         % data.length 的原因主要是为了防止数组越界错误
     * 4.新数组赋值完成需要将 front 重新指向0,因为新数组的front指针是从0开始的。
     *   tail最后要指向等于size大小的值,
     * @param newCapacity
     */
    private void resize(int newCapacity){
        E[] newData = (E[]) new Object[newCapacity + 1];
        for (int i=0; i < size; i++){
            newData[i] = data[(i + front) % data.length];
        }
        data = newData;
        front = 0;
        tail = size;
    }
    /**
     * 1.元素从 front位置开始循环遍历,i的值不能等于tail,
     *   也就是到tail的前一位,i = i + 1 且%data.length,
     *   因为i有可能从循环头重新开始
     * 2.( i + 1 ) % data.length != tail  如果当前i + 1 % data.length
     *   不等于tail表示不到最后一个元素,就拼接,
     * @return
     */
    @Override
    public String toString(){
        StringBuilder stringBuilder = new StringBuilder();
        stringBuilder.append(String.format("LoopQueue:size = %d, capacity = %d\n",size, getCapacity()));
        stringBuilder.append("front [");
        for (int i=front; i != tail; i = (i + 1)%data.length){
            stringBuilder.append(data[i]);
            if ((i + 1)%data.length != tail){
                stringBuilder.append(",");
            }
        }
        stringBuilder.append("] tail");
        return stringBuilder.toString();
    }
}

循环队列测试类

public class LoopQueueTest {
    public static void main(String[] args) {
        LoopQueue<Integer> integerArrayQueue = new LoopQueue<>();
        for (int i = 0; i < 10; i++) {
            integerArrayQueue.enqueue(i);
            System.out.println(integerArrayQueue);

            if(i % 3 == 2){
                integerArrayQueue.dequeue();
                System.out.println(integerArrayQueue);
            }
        }
    }
}
//测试结果
LoopQueue:size = 1, capacity = 5
front [0] tail
LoopQueue:size = 2, capacity = 5
front [0,1] tail
LoopQueue:size = 3, capacity = 5
front [0,1,2] tail
LoopQueue:size = 2, capacity = 5
front [1,2] tail
LoopQueue:size = 3, capacity = 5
front [1,2,3] tail
LoopQueue:size = 4, capacity = 5
front [1,2,3,4] tail
LoopQueue:size = 5, capacity = 5
front [1,2,3,4,5] tail
LoopQueue:size = 4, capacity = 5
front [2,3,4,5] tail
LoopQueue:size = 5, capacity = 5
front [2,3,4,5,6] tail
LoopQueue:size = 6, capacity = 10
front [2,3,4,5,6,7] tail
LoopQueue:size = 7, capacity = 10
front [2,3,4,5,6,7,8] tail
LoopQueue:size = 6, capacity = 10
front [3,4,5,6,7,8] tail
LoopQueue:size = 7, capacity = 10
front [3,4,5,6,7,8,9] tail

测试结果是正确的,符合队列结构的数据存取,但基于自定义数组来实现,所以会调用数组方法的removeFirst方法,删除第一个元素的同时,会重新将后面所有元素前移,索引前移,均摊时间复杂度为O(n)。 

3. 数组实现队列

public class ArrayQueue<E> implements Queue<E>{

    Array<E> array; //详情内容:https://www.cnblogs.com/FondWang/p/11806545.html

    //初始化大小
    public ArrayQueue(int capacity){
        array=new Array<E>(capacity);
    }

  //无参构造器
    public ArrayQueue(){
        array=new Array<E>();
    }

   //入队。只能从队尾添加数据
    @Override
    public void enqueue(E param) {
        array.addLast(param);
    }
    //出队。只能从队首添加内容
    @Override
    public E dequeue() {
        return array.removeFirst();
    }
    //返回队首的元素
    @Override
    public E getFront() {
        return array.getFirst();
    }
   
    @Override
    public int getSize() {
        return array.getSize();
    }

    @Override
    public boolean isEmpty() {
        return array.isEmpty();
    }

    @Override
    public String toString(){
        StringBuffer sb = new StringBuffer();
        sb.append("front: ");
        sb.append("[");
        for(int i=0;i<array.getSize();i++){
            sb.append(array.get(i));
            if(i!=array.getSize()-1){
                sb.append(", ");
            }
        }
        sb.append("]  tail");
        return sb.toString();
    }
}

 数组队列测试类

public class ArrayQueueTest {
    public static void main(String[] args) {
        ArrayQueue<Integer> integerArrayQueue = new ArrayQueue<>();
        for (int i = 0; i < 10; i++) {
            integerArrayQueue.enqueue(i);
            System.out.println(integerArrayQueue);

            if(i % 3 == 2){
                integerArrayQueue.dequeue();
                System.out.println(integerArrayQueue);
            }
        }
    }
}
//测试结果
ArrayQueue:front [0] tail
ArrayQueue:front [0, 1] tail
ArrayQueue:front [0, 1, 2] tail
ArrayQueue:front [1, 2] tail
ArrayQueue:front [1, 2, 3] tail
ArrayQueue:front [1, 2, 3, 4] tail
ArrayQueue:front [1, 2, 3, 4, 5] tail
ArrayQueue:front [2, 3, 4, 5] tail
ArrayQueue:front [2, 3, 4, 5, 6] tail
ArrayQueue:front [2, 3, 4, 5, 6, 7] tail
ArrayQueue:front [2, 3, 4, 5, 6, 7, 8] tail
ArrayQueue:front [3, 4, 5, 6, 7, 8] tail
ArrayQueue:front [3, 4, 5, 6, 7, 8, 9] tail

 因为引用了指针这个概念,删除的时候索引不会重排,均摊时间复杂度为O(1)

4. 循环队列和数组队列 效率对比

测试代码

import java.util.Random;
public class Main {
    private static double testQueue(Queue<Integer> q, int opCount){
        long startTime = System.nanoTime();
        Random random = new Random();
        for (int i=0;i<opCount; i++){
            q.enqueue(random.nextInt(Integer.MAX_VALUE));
        }
        for (int i=0; i<opCount;i++){
            q.dequeue();
        }
        long endTime = System.nanoTime();
        return (endTime - startTime) / 1000000000.0;
    }

    public static void main(String[] args) {
        int opCount = 100000;//十万数据增删效率

        ArrayQueue arrayQueue = new ArrayQueue();
        double time1 = testQueue(arrayQueue,opCount);
        System.out.println("ArrayQueue, time:" + time1 + "s");

        LoopQueue loopQueue = new LoopQueue();
        double time2 = testQueue(loopQueue,opCount);
        System.out.println("LoopQueue, time:" + time2 + "s");

        System.out.println("loopQueue队列数ArrayQueue的 " + Math.round(time1/time2) + "倍");
    }
}

 

测试结果

ArrayQueue, time:3.78317767s
LoopQueue, time:0.011734084s
loopQueue队列 是ArrayQueue 的 322

//测试三次: 322、327、322,平均(322+327+323)/ 3 约为 323倍

 

posted @ 2019-11-06 19:55  王大军  阅读(458)  评论(0编辑  收藏  举报