cifar10 model structure
代码示例:
import torch import torchvision.datasets from torch import nn from torch.nn import Conv2d,MaxPool2d,Flatten,Linear,Sequential from torch.utils.tensorboard import SummaryWriter class myModel(nn.Module): def __init__(self): super(myModel,self).__init__() # self.conv1=Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2) # self.maxpool1=MaxPool2d(kernel_size=2) # self.conv2=Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2) # self.maxpool2=MaxPool2d(kernel_size=2) # self.conv3=Conv2d(in_channels=32,out_channels=64,kernel_size=5,stride=1,padding=2) # self.maxpool3=MaxPool2d(kernel_size=2) # self.flattern=Flatten() # self.linear1=Linear(1024,64) # self.linear2=Linear(64,10) self.model=Sequential( Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2), MaxPool2d(kernel_size=2), Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2), MaxPool2d(kernel_size=2), Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2), MaxPool2d(kernel_size=2), Flatten(), Linear(1024, 64), Linear(64, 10) ) def forward(self,x): # x=self.conv1(x) # x=self.maxpool1(x) # x=self.conv2(x) # x=self.maxpool2(x) # x=self.conv3(x) # x=self.maxpool3(x) # x=self.flattern(x) # x=self.linear1(x) # x=self.linear2(x) x=self.model(x) return x
mymodel=myModel() print(mymodel) input=torch.ones((64,3,32,32)) print(input) output=mymodel(input) print(output.shape) writer=SummaryWriter('seq_logs') writer.add_graph(mymodel,input) writer.close()
其中根据下图的公式计算padding数
另外,Sequential把网络每一层按照顺序进行编号,在forward里面按照序号执行。