LibTorch 自动微分
得益于反向传播算法,神经网络计算导数时非常方便,下面代码中演示如何使用LibTorch进行自动微分求导。
进行自动微分运算需要调用函数
torch::autograd::grad(
outputs, // 为某个可微函数的输出 y=f(x) 中的 y
inputs, // 为某个可微函数的输入 y=f(x) 中的 x
grad_outputs,// 雅克比矩阵(此处计算 f'(x),故设置为1,且与x形状相同 )
retain_graph,// 默认值与 create_graph 相同,这里设置为 true即可
create_graph,// 需要设置为 true 以计算高阶导数
allow_unused // 设置为 false 即可
)
在本文示例中,我们计算 \(y=x^2+x\) 在 \(x = 0.1, 0.3, 0.5\) 处的函数值、一阶导数和二阶导数值,根据我们学到的数学知识,很容易计算出下列数据
\(x\) | 0.1 | 0.3 | 0.5 |
---|---|---|---|
\(y\) | 0.11 | 0.39 | 0.75 |
\(y'\) | 1.20 | 1.60 | 2.00 |
\(y''\) | 2.00 | 2.00 | 2.00 |
而在LibTorch中调用自动微分计算导数的代码如下所示
#include <iostream>
#include <torch/torch.h>
int main(int argc, char* atgv[])
{
std::cout.setf(std::ios::scientific);
std::cout.precision(7);
std::vector<float> vec{0.1, 0.3, 0.5};
torch::Tensor x = torch::from_blob(vec.data(), {3}, torch::kFloat).requires_grad_(true);
torch::Tensor y = x * x + x; // y= x^2 + x
auto weight = torch::ones_like(x);
std::cout << "x = ";
for (int i = 0; i < 3; ++i)
std::cout << x[i].item<float>() << " ";
std::cout << std::endl;
std::cout << "y = "; // 0.11 0.39 0.75
for (int i = 0; i < 3; ++i)
std::cout << y[i].item<float>() << " ";
std::cout << std::endl;
// 计算输出一阶导数(y' = 2x + 1)
auto dydx = torch::autograd::grad({y}, {x}, {weight}, true, true, false);
std::cout << "dydx = "; // 1.2 1.6 2.0
for (int i = 0; i < 3; ++i)
std::cout << dydx[0][i].item<float>() << " ";
std::cout << std::endl;
// 计算输出二阶导数(y''= 2)
auto d2ydx2 = torch::autograd::grad({dydx[0]}, {x}, {weight});
std::cout << "d2ydx2 = "; // 2.0 2.0 2.0
for (int i = 0; i < 3; ++i)
std::cout << d2ydx2[0][i].item<float>() << " ";
std::cout << std::endl;
return 0;
}
计算结果如下图所示,与我们手动计算的结果一致。
本文来自博客园,作者:Fitanium,转载请注明原文链接:https://www.cnblogs.com/Fitanium/p/16155675.html