<class 'pandas.core.indexes.datetimes.DatetimeIndex'>
DatetimeIndex(['2017-12-01', '2017-12-02', '2017-12-03', '2017-12-04',
'2017-12-05', '2017-12-06', '2017-12-07', '2017-12-08',
'2017-12-09', '2017-12-10', '2017-12-11', '2017-12-12',
'2017-12-13', '2017-12-14', '2017-12-15', '2017-12-16',
'2017-12-17', '2017-12-18', '2017-12-19', '2017-12-20',
'2017-12-21', '2017-12-22', '2017-12-23', '2017-12-24',
'2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28',
'2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01',
'2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05',
'2018-01-06', '2018-01-07', '2018-01-08', '2018-01-09',
'2018-01-10', '2018-01-11', '2018-01-12', '2018-01-13',
'2018-01-14', '2018-01-15', '2018-01-16', '2018-01-17',
'2018-01-18', '2018-01-19', '2018-01-20', '2018-01-21',
'2018-01-22', '2018-01-23', '2018-01-24', '2018-01-25',
'2018-01-26', '2018-01-27', '2018-01-28', '2018-01-29',
'2018-01-30', '2018-01-31'],
dtype='datetime64[ns]', freq='D')
DatetimeIndex(['2017-12-01', '2017-12-11', '2017-12-21', '2017-12-31',
'2018-01-10', '2018-01-20', '2018-01-30'],
dtype='datetime64[ns]', freq='10D')
DatetimeIndex(['2017-12-31', '2018-01-31', '2018-02-28', '2018-03-31',
'2018-04-30', '2018-05-31', '2018-06-30', '2018-07-31',
'2018-08-31', '2018-09-30'],
dtype='datetime64[ns]', freq='M')
DatetimeIndex(['2017-12-01 10:10:10', '2017-12-01 11:10:10',
'2017-12-01 12:10:10', '2017-12-01 13:10:10',
'2017-12-01 14:10:10', '2017-12-01 15:10:10',
'2017-12-01 16:10:10', '2017-12-01 17:10:10',
'2017-12-01 18:10:10', '2017-12-01 19:10:10',
'2017-12-01 20:10:10', '2017-12-01 21:10:10',
'2017-12-01 22:10:10', '2017-12-01 23:10:10',
'2017-12-02 00:10:10', '2017-12-02 01:10:10',
'2017-12-02 02:10:10', '2017-12-02 03:10:10',
'2017-12-02 04:10:10', '2017-12-02 05:10:10',
'2017-12-02 06:10:10', '2017-12-02 07:10:10',
'2017-12-02 08:10:10', '2017-12-02 09:10:10',
'2017-12-02 10:10:10', '2017-12-02 11:10:10',
'2017-12-02 12:10:10', '2017-12-02 13:10:10',
'2017-12-02 14:10:10', '2017-12-02 15:10:10',
'2017-12-02 16:10:10', '2017-12-02 17:10:10',
'2017-12-02 18:10:10', '2017-12-02 19:10:10',
'2017-12-02 20:10:10', '2017-12-02 21:10:10',
'2017-12-02 22:10:10', '2017-12-02 23:10:10',
'2017-12-03 00:10:10', '2017-12-03 01:10:10',
'2017-12-03 02:10:10', '2017-12-03 03:10:10',
'2017-12-03 04:10:10', '2017-12-03 05:10:10',
'2017-12-03 06:10:10', '2017-12-03 07:10:10',
'2017-12-03 08:10:10', '2017-12-03 09:10:10',
'2017-12-03 10:10:10', '2017-12-03 11:10:10'],
dtype='datetime64[ns]', freq='H')
A B
2017-12-01 10:10:10 0 1
2017-12-01 11:10:10 2 3
2017-12-01 12:10:10 4 5
2017-12-01 13:10:10 6 7
2017-12-01 14:10:10 8 9
2017-12-01 15:10:10 10 11
2017-12-01 16:10:10 12 13
2017-12-01 17:10:10 14 15
2017-12-01 18:10:10 16 17
2017-12-01 19:10:10 18 19
2017-12-01 20:10:10 20 21
2017-12-01 21:10:10 22 23
2017-12-01 22:10:10 24 25
2017-12-01 23:10:10 26 27
2017-12-02 00:10:10 28 29
2017-12-02 01:10:10 30 31
2017-12-02 02:10:10 32 33
2017-12-02 03:10:10 34 35
2017-12-02 04:10:10 36 37
2017-12-02 05:10:10 38 39
2017-12-02 06:10:10 40 41
2017-12-02 07:10:10 42 43
2017-12-02 08:10:10 44 45
2017-12-02 09:10:10 46 47
2017-12-02 10:10:10 48 49
2017-12-02 11:10:10 50 51
2017-12-02 12:10:10 52 53
2017-12-02 13:10:10 54 55
2017-12-02 14:10:10 56 57
2017-12-02 15:10:10 58 59
2017-12-02 16:10:10 60 61
2017-12-02 17:10:10 62 63
2017-12-02 18:10:10 64 65
2017-12-02 19:10:10 66 67
2017-12-02 20:10:10 68 69
2017-12-02 21:10:10 70 71
2017-12-02 22:10:10 72 73
2017-12-02 23:10:10 74 75
2017-12-03 00:10:10 76 77
2017-12-03 01:10:10 78 79
2017-12-03 02:10:10 80 81
2017-12-03 03:10:10 82 83
2017-12-03 04:10:10 84 85
2017-12-03 05:10:10 86 87
2017-12-03 06:10:10 88 89
2017-12-03 07:10:10 90 91
2017-12-03 08:10:10 92 93
2017-12-03 09:10:10 94 95
2017-12-03 10:10:10 96 97
2017-12-03 11:10:10 98 99
<class 'pandas.core.frame.DataFrame'>
A B
2017-12-01 14 14
2017-12-02 24 24
2017-12-03 12 12
['20171201', '20171202', '20171203']
DatetimeIndex(['2017-12-01', '2017-12-02', '2017-12-03'], dtype='datetime64[ns]', freq=None)
|