Beauty Contest(旋转卡壳模版题)
Beauty Contest
http://poj.org/problem?id=2187
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 44329 | Accepted: 13668 |
Description
Bessie, Farmer John's prize cow, has just won first place in a bovine beauty contest, earning the title 'Miss Cow World'. As a result, Bessie will make a tour of N (2 <= N <= 50,000) farms around the world in order to spread goodwill between farmers and their cows. For simplicity, the world will be represented as a two-dimensional plane, where each farm is located at a pair of integer coordinates (x,y), each having a value in the range -10,000 ... 10,000. No two farms share the same pair of coordinates.
Even though Bessie travels directly in a straight line between pairs of farms, the distance between some farms can be quite large, so she wants to bring a suitcase full of hay with her so she has enough food to eat on each leg of her journey. Since Bessie refills her suitcase at every farm she visits, she wants to determine the maximum possible distance she might need to travel so she knows the size of suitcase she must bring.Help Bessie by computing the maximum distance among all pairs of farms.
Even though Bessie travels directly in a straight line between pairs of farms, the distance between some farms can be quite large, so she wants to bring a suitcase full of hay with her so she has enough food to eat on each leg of her journey. Since Bessie refills her suitcase at every farm she visits, she wants to determine the maximum possible distance she might need to travel so she knows the size of suitcase she must bring.Help Bessie by computing the maximum distance among all pairs of farms.
Input
* Line 1: A single integer, N
* Lines 2..N+1: Two space-separated integers x and y specifying coordinate of each farm
* Lines 2..N+1: Two space-separated integers x and y specifying coordinate of each farm
Output
* Line 1: A single integer that is the squared distance between the pair of farms that are farthest apart from each other.
Sample Input
4 0 0 0 1 1 1 1 0
Sample Output
2
Hint
Farm 1 (0, 0) and farm 3 (1, 1) have the longest distance (square root of 2)
1 #include<iostream> 2 #include<cstring> 3 #include<cstdio> 4 #include<vector> 5 #include<cmath> 6 #include<algorithm> 7 using namespace std; 8 const double eps=1e-8; 9 const double INF=1e20; 10 const double PI=acos(-1.0); 11 12 int sgn(double x){ 13 if(fabs(x)<eps) return 0; 14 if(x<0) return -1; 15 else return 1; 16 } 17 18 inline double sqr(double x){return x*x;} 19 inline double hypot(double a,double b){return sqrt(a*a+b*b);} 20 struct Point{ 21 double x,y; 22 Point(){} 23 Point(double _x,double _y){ 24 x=_x; 25 y=_y; 26 } 27 void input(){ 28 scanf("%lf %lf",&x,&y); 29 } 30 void output(){ 31 printf("%.2f %.2f\n",x,y); 32 } 33 bool operator == (const Point &b)const{ 34 return sgn(x-b.x) == 0 && sgn(y-b.y)== 0; 35 } 36 bool operator < (const Point &b)const{ 37 return sgn(x-b.x)==0?sgn(y-b.y)<0:x<b.x; 38 } 39 Point operator - (const Point &b)const{ 40 return Point(x-b.x,y-b.y); 41 } 42 //叉积 43 double operator ^ (const Point &b)const{ 44 return x*b.y-y*b.x; 45 } 46 //点积 47 double operator * (const Point &b)const{ 48 return x*b.x+y*b.y; 49 } 50 //返回长度 51 double len(){ 52 return hypot(x,y); 53 } 54 //返回长度的平方 55 double len2(){ 56 return x*x+y*y; 57 } 58 //返回两点的距离 59 double distance(Point p){ 60 return hypot(x-p.x,y-p.y); 61 } 62 Point operator + (const Point &b)const{ 63 return Point(x+b.x,y+b.y); 64 } 65 Point operator * (const double &k)const{ 66 return Point(x*k,y*k); 67 } 68 Point operator / (const double &k)const{ 69 return Point(x/k,y/k); 70 } 71 72 //计算pa和pb的夹角 73 //就是求这个点看a,b所成的夹角 74 ///LightOJ1202 75 double rad(Point a,Point b){ 76 Point p=*this; 77 return fabs(atan2(fabs((a-p)^(b-p)),(a-p)*(b-p))); 78 } 79 //化为长度为r的向量 80 Point trunc(double r){ 81 double l=len(); 82 if(!sgn(l)) return *this; 83 r/=l; 84 return Point(x*r,y*r); 85 } 86 //逆时针转90度 87 Point rotleft(){ 88 return Point(-y,x); 89 } 90 //顺时针转90度 91 Point rotright(){ 92 return Point(y,-x); 93 } 94 //绕着p点逆时针旋转angle 95 Point rotate(Point p,double angle){ 96 Point v=(*this) -p; 97 double c=cos(angle),s=sin(angle); 98 return Point(p.x+v.x*c-v.y*s,p.y+v.x*s+v.y*c); 99 } 100 }; 101 102 struct Line{ 103 Point s,e; 104 Line(){} 105 Line(Point _s,Point _e){ 106 s=_s; 107 e=_e; 108 } 109 bool operator==(Line v){ 110 return (s==v.s)&&(e==v.e); 111 } 112 //根据一个点和倾斜角angle确定直线,0<=angle<pi 113 Line(Point p,double angle){ 114 s=p; 115 if(sgn(angle-PI/2)==0){ 116 e=(s+Point(0,1)); 117 } 118 else{ 119 e=(s+Point(1,tan(angle))); 120 } 121 } 122 //ax+by+c=0; 123 Line(double a,double b,double c){ 124 if(sgn(a)==0){ 125 s=Point(0,-c/b); 126 e=Point(1,-c/b); 127 } 128 else if(sgn(b)==0){ 129 s=Point(-c/a,0); 130 e=Point(-c/a,1); 131 } 132 else{ 133 s=Point(0,-c/b); 134 e=Point(1,(-c-a)/b); 135 } 136 } 137 void input(){ 138 s.input(); 139 e.input(); 140 } 141 void adjust(){ 142 if(e<s) swap(s,e); 143 } 144 //求线段长度 145 double length(){ 146 return s.distance(e); 147 } 148 //返回直线倾斜角 0<=angle<pi 149 double angle(){ 150 double k=atan2(e.y-s.y,e.x-s.x); 151 if(sgn(k)<0) k+=PI; 152 if(sgn(k-PI)==0) k-=PI; 153 return k; 154 } 155 //点和直线的关系 156 //1 在左侧 157 //2 在右侧 158 //3 在直线上 159 int relation(Point p){ 160 int c=sgn((p-s)^(e-s)); 161 if(c<0) return 1; 162 else if(c>0) return 2; 163 else return 3; 164 } 165 //点在线段上的判断 166 bool pointonseg(Point p){ 167 return sgn((p-s)^(e-s))==0&&sgn((p-s)*(p-e))<=0; 168 } 169 //两向量平行(对应直线平行或重合) 170 bool parallel(Line v){ 171 return sgn((e-s)^(v.e-v.s))==0; 172 } 173 //两线段相交判断 174 //2 规范相交 175 //1 非规范相交 176 //0 不相交 177 int segcrossseg(Line v){ 178 int d1=sgn((e-s)^(v.s-s)); 179 int d2=sgn((e-s)^(v.e-s)); 180 int d3=sgn((v.e-v.s)^(s-v.s)); 181 int d4=sgn((v.e-v.s)^(e-v.s)); 182 if((d1^d2)==-2&&(d3^d4)==-2) return 2; 183 return (d1==0&&sgn((v.s-s)*(v.s-e))<=0|| 184 d2==0&&sgn((v.e-s)*(v.e-e))<=0|| 185 d3==0&&sgn((s-v.s)*(s-v.e))<=0|| 186 d4==0&&sgn((e-v.s)*(e-v.e))<=0); 187 } 188 //直线和线段相交判断 189 //-*this line -v seg 190 //2 规范相交 191 //1 非规范相交 192 //0 不相交 193 int linecrossseg(Line v){ 194 int d1=sgn((e-s)^(v.s-s)); 195 int d2=sgn((e-s)^(v.e-s)); 196 if((d1^d2)==-2) return 2; 197 return (d1==0||d2==0); 198 } 199 //两直线关系 200 //0 平行 201 //1 重合 202 //2 相交 203 int linecrossline(Line v){ 204 if((*this).parallel(v)) 205 return v.relation(s)==3; 206 return 2; 207 } 208 //求两直线的交点 209 //要保证两直线不平行或重合 210 Point crosspoint(Line v){ 211 double a1=(v.e-v.s)^(s-v.s); 212 double a2=(v.e-v.s)^(e-v.s); 213 return Point((s.x*a2-e.x*a1)/(a2-a1),(s.y*a2-e.y*a1)/(a2-a1)); 214 } 215 //点到直线的距离 216 double dispointtoline(Point p){ 217 return fabs((p-s)^(e-s))/length(); 218 } 219 //点到线段的距离 220 double dispointtoseg(Point p){ 221 if(sgn((p-s)*(e-s))<0||sgn((p-e)*(s-e))<0) 222 return min(p.distance(s),p.distance(e)); 223 return dispointtoline(p); 224 } 225 //返回线段到线段的距离 226 //前提是两线段不相交,相交距离就是0了 227 double dissegtoseg(Line v){ 228 return min(min(dispointtoseg(v.s),dispointtoseg(v.e)),min(v.dispointtoseg(s),v.dispointtoseg(e))); 229 } 230 //返回点P在直线上的投影 231 Point lineprog(Point p){ 232 return s+(((e-s)*((e-s)*(p-s)))/((e-s).len2())); 233 } 234 //返回点P关于直线的对称点 235 Point symmetrypoint(Point p){ 236 Point q=lineprog(p); 237 return Point(2*q.x-p.x,2*q.y-p.y); 238 } 239 }; 240 241 struct circle{ 242 Point p; 243 double r; 244 circle(){} 245 circle(Point _p,double _r){ 246 p=_p; 247 r=_r; 248 } 249 250 circle(double x,double y,double _r){ 251 p=Point(x,y); 252 r=_r; 253 } 254 255 circle(Point a,Point b,Point c){///三角形的外接圆 256 Line u=Line((a+b)/2,((a+b)/2)+((b-a).rotleft())); 257 Line v=Line((b+c)/2,((b+c)/2)+((c-b).rotleft())); 258 p=u.crosspoint(v); 259 r=p.distance(a); 260 } 261 262 circle(Point a,Point b,Point c,bool t){///三角形的内切圆 263 Line u,v; 264 double m=atan2(b.y-a.y,b.x-a.x),n=atan2(c.y-a.y,c.x-a.x); 265 u.s=a; 266 u.e=u.s+Point(cos((n+m)/2),sin((n+m)/2)); 267 v.s=b; 268 m=atan2(a.y-b.y,a.x-b.x),n=atan2(c.y-b.y,c.x-b.x); 269 v.e=v.s+Point(cos((n+m)/2),sin((n+m)/2)); 270 p=u.crosspoint(v); 271 r=Line(a,b).dispointtoseg(p); 272 } 273 274 void input(){ 275 p.input(); 276 scanf("%lf",&r); 277 } 278 279 void output(){ 280 printf("%.2f %.2f %.2f\n",p.x,p.y,r); 281 } 282 283 bool operator==(circle v){ 284 return (p==v.p)&&sgn(r-v.r)==0; 285 } 286 287 bool operator<(circle v)const{ 288 return ((p<v.p)||((p==v.p)&&sgn(r-v.r)<0)); 289 } 290 291 double area(){ 292 return PI*r*r; 293 } 294 295 double circumference(){ ///周长 296 return 2*PI*r; 297 } 298 299 int relation(Point b){///点和圆的关系 0圆外 1圆上 2圆内 300 double dst=b.distance(p); 301 if(sgn(dst-r)<0) return 2; 302 else if(sgn(dst-r)==0) return 1; 303 return 0; 304 } 305 306 int relationseg(Line v){///线段和圆的关系,比较的是圆心到线段的距离和半径的关系 307 double dst=v.dispointtoseg(p); 308 if(sgn(dst-r)<0) return 2; 309 else if(sgn(dst-r)==0) return 1; 310 return 0; 311 } 312 313 int relationline(Line v){///直线和圆的关系,比较的是圆心到直线的距离和半径的关系 314 double dst=v.dispointtoline(p); 315 if(sgn(dst-r)<0) return 2; 316 else if(sgn(dst-r)==0) return 1; 317 return 0; 318 } 319 320 int relationcircle(circle v){///两圆的关系 5相离 4外切 3相交 2内切 1内含 321 double d=p.distance(v.p); 322 if(sgn(d-r-v.r)>0) return 5; 323 if(sgn(d-r-v.r)==0) return 4; 324 double l=fabs(r-v.r); 325 if(sgn(d-r-v.r)<0&&sgn(d-l)>0) return 3; 326 if(sgn(d-l)==0) return 2; 327 if(sgn(d-l)<0) return 1; 328 } 329 330 int pointcrosscircle(circle v,Point &p1,Point &p2){///求两个圆的交点,0没有交点 1一个交点 2两个交点 331 int rel=relationcircle(v); 332 if(rel == 1 || rel == 5) return 0; 333 double d=p.distance(v.p); 334 double l=(d*d+r*r-v.r*v.r)/2*d; 335 double h=sqrt(r*r-l*l); 336 Point tmp=p+(v.p-p).trunc(l); 337 p1=tmp+((v.p-p).rotleft().trunc(h)); 338 p2=tmp+((v.p-p).rotright().trunc(h)); 339 if(rel == 2 || rel == 4) return 1; 340 return 2; 341 } 342 343 int pointcrossline(Line v,Point &p1,Point &p2){///求直线和圆的交点,返回交点的个数 344 if(!(*this).relationline(v)) return 0; 345 Point a=v.lineprog(p); 346 double d=v.dispointtoline(p); 347 d=sqrt(r*r-d*d); 348 if(sgn(d)==0) { 349 p1=a; 350 p2=a; 351 return 1; 352 } 353 p1=a+(v.e-v.s).trunc(d); 354 p2=a-(v.e-v.s).trunc(d); 355 return 2; 356 } 357 358 int getcircle(Point a,Point b,double r1,circle &c1,circle &c2){///得到过a,b两点,半径为r1的两个圆 359 circle x(a,r1),y(b,r1); 360 int t=x.pointcrosscircle(y,c1.p,c2.p); 361 if(!t) return 0; 362 c1.r=c2.r=r; 363 return t; 364 } 365 366 int getcircle(Line u,Point q,double r1,circle &c1,circle &c2){///得到与直线u相切,过点q,半径为r1的圆 367 double dis = u.dispointtoline(q); 368 if(sgn(dis-r1*2)>0) return 0; 369 if(sgn(dis)==0) { 370 c1.p=q+((u.e-u.s).rotleft().trunc(r1)); 371 c2.p=q+((u.e-u.s).rotright().trunc(r1)); 372 c1.r=c2.r=r1; 373 return 2; 374 } 375 Line u1=Line((u.s+(u.e-u.s).rotleft().trunc(r1)),(u.e+(u.e-u.s).rotleft().trunc(r1))); 376 Line u2=Line((u.s+(u.e-u.s).rotright().trunc(r1)),(u.e+(u.e-u.s).rotright().trunc(r1))); 377 circle cc=circle(q,r1); 378 Point p1,p2; 379 if(!cc.pointcrossline(u1,p1,p2)) cc.pointcrossline(u2,p1,p2); 380 c1=circle(p1,r1); 381 if(p1==p2){ 382 c2=c1; 383 return 1; 384 } 385 c2=circle(p2,r1); 386 return 2; 387 } 388 389 int getcircle(Line u,Line v,double r1,circle &c1,circle &c2,circle &c3,circle &c4){///同时与直线u,v相切,半径为r1的圆 390 if(u.parallel(v)) return 0;///两直线平行 391 Line u1=Line(u.s+(u.e-u.s).rotleft().trunc(r1),u.e+(u.e-u.s).rotleft().trunc(r1)); 392 Line u2=Line(u.s+(u.e-u.s).rotright().trunc(r1),u.e+(u.e-u.s).rotright().trunc(r1)); 393 Line v1=Line(v.s+(v.e-v.s).rotleft().trunc(r1),v.e+(v.e-v.s).rotleft().trunc(r1)); 394 Line v2=Line(v.s+(v.e-v.s).rotright().trunc(r1),v.e+(v.e-v.s).rotright().trunc(r1)); 395 c1.r=c2.r=c3.r=c4.r=r1; 396 c1.p=u1.crosspoint(v1); 397 c2.p=u1.crosspoint(v2); 398 c3.p=u2.crosspoint(v1); 399 c4.p=u2.crosspoint(v2); 400 return 4; 401 } 402 403 int getcircle(circle cx,circle cy,double r1,circle &c1,circle &c2){///同时与不相交圆 cx,cy相切,半径为r1的圆 404 circle x(cx.p,r1+cx.r),y(cy.p,r1+cy.r); 405 int t=x.pointcrosscircle(y,c1.p,c2.p); 406 if(!t) return 0; 407 c1.r=c2.r=r1; 408 return t; 409 } 410 411 int tangentline(Point q,Line &u,Line &v){///过一点作圆的切线(先判断点和圆的关系) 412 int x=relation(q); 413 if(x==2) return 0; 414 if(x==1){ 415 u=Line(q,q+(q-p).rotleft()); 416 v=u; 417 return 1; 418 } 419 double d=p.distance(q); 420 double l=r*r/d; 421 double h=sqrt(r*r-l*l); 422 u=Line(q,p+((q-p).trunc(l)+(q-p).rotleft().trunc(h))); 423 v=Line(q,p+((q-p).trunc(l)+(q-p).rotright().trunc(h))); 424 return 2; 425 } 426 427 double areacircle(circle v){///求两圆相交的面积 428 int rel=relationcircle(v); 429 if(rel >= 4) return 0.0; 430 if(rel <= 2) return min(area(),v.area()); 431 double d=p.distance(v.p); 432 double hf=(r+v.r+d)/2.0; 433 double ss=2*sqrt(hf*(hf-r)*(hf-v.r)*(hf-d)); 434 double a1=acos((r*r+d*d-v.r*v.r)/(2.0*r*d)); 435 a1=a1*r*r; 436 double a2=acos((v.r*v.r+d*d-r*r)/(2.0*v.r*d)); 437 a2=a2*v.r*v.r; 438 return a1+a2-ss; 439 } 440 441 double areatriangle(Point a,Point b){///求圆和三角形pab的相交面积 442 if(sgn((p-a)^(p-b))==0) return 0.0; 443 Point q[5]; 444 int len=0; 445 q[len++]=a; 446 Line l(a,b); 447 Point p1,p2; 448 if(pointcrossline(l,q[1],q[2])==2){ 449 if(sgn((a-q[1])*(b-q[1]))<0) q[len++]=q[1]; 450 if(sgn((a-q[2])*(b-q[2]))<0) q[len++]=q[2]; 451 } 452 q[len++]=b; 453 if(len==4 && sgn((q[0]-q[1])*(q[2]-q[1]))>0) swap(q[1],q[2]); 454 double res=0; 455 for(int i=0;i<len-1;i++){ 456 if(relation(q[i])==0||relation(q[i+1])==0){ 457 double arg=p.rad(q[i],q[i+1]); 458 res+=r*r*arg/2.0; 459 } 460 else{ 461 res+=fabs((q[i]-p)^(q[i+1]-p))/2.0; 462 } 463 } 464 return res; 465 } 466 }; 467 468 struct polygon{ 469 int n; 470 Point p[100010]; 471 Line l[100010]; 472 void input(int _n){ 473 n=_n; 474 for(int i=0;i<n;i++){ 475 p[i].input(); 476 } 477 } 478 479 void add(Point q){ 480 p[n++]=q; 481 } 482 483 void getline(){ 484 for(int i=0;i<n;i++){ 485 l[i]=Line(p[i],p[(i+1)%n]); 486 } 487 } 488 489 struct cmp{ 490 Point p; 491 cmp(const Point &p0){p=p0;} 492 bool operator()(const Point &aa,const Point &bb){ 493 Point a=aa,b=bb; 494 int d=sgn((a-p)^(b-p)); 495 if(d==0){ 496 return sgn(a.distance(p)-b.distance(p))<0; 497 } 498 return d>0; 499 } 500 }; 501 502 void norm(){///进行极角排序 503 Point mi=p[0]; 504 for(int i=1;i<n;i++){ 505 mi=min(mi,p[i]); 506 } 507 sort(p,p+n,cmp(mi)); 508 } 509 510 void getconvex(polygon &convex){///得到第一种凸包的方法,编号为0~n-1,可能要特判所有点共点或共线的特殊情况 511 sort(p,p+n); 512 convex.n=n; 513 for(int i=0;i<min(n,2);i++){ 514 convex.p[i]=p[i]; 515 } 516 if(convex.n==2&&(convex.p[0]==convex.p[1])) convex.n--; 517 if(n<=2) return; 518 int &top=convex.n; 519 top=1; 520 for(int i=2;i<n;i++){ 521 while(top&&sgn((convex.p[top]-p[i])^(convex.p[top-1]-p[i]))<=0) top--; 522 convex.p[++top]=p[i]; 523 } 524 int temp=top; 525 convex.p[++top]=p[n-2]; 526 for(int i=n-3;i>=0;i--){ 527 while(top!=temp&&sgn((convex.p[top]-p[i])^(convex.p[top-1]-p[i]))<=0) top--; 528 convex.p[++top]=p[i]; 529 } 530 if(convex.n==2&&(convex.p[0]==convex.p[1])) convex.n--; 531 convex.norm(); 532 } 533 534 void Graham(polygon &convex){///得到凸包的第二种方法 535 norm(); 536 int &top=convex.n; 537 top=0; 538 if(n==1){ 539 top=1; 540 convex.p[0]=p[0]; 541 return; 542 } 543 if(n==2){ 544 top=2; 545 convex.p[0]=p[0]; 546 convex.p[1]=p[1]; 547 if(convex.p[0]==convex.p[1]) top--; 548 return; 549 } 550 convex.p[0]=p[0]; 551 convex.p[1]=p[1]; 552 top=2; 553 for(int i=2;i<n;i++){ 554 while(top>1&&sgn((convex.p[top-1]-convex.p[top-2])^(p[i]-convex.p[top-2]))<=0) top--; 555 convex.p[top++]=p[i]; 556 } 557 if(convex.n==2 && (convex.p[0]==convex.p[1])) convex.n--; 558 } 559 560 double rotating_calipers(){ 561 double ans = 0; 562 Point v; 563 int cur = 1; 564 for (int i = 0; i < n; i++){ 565 v = p[i] - p[(i + 1) % n]; 566 while ((v ^ (p[(cur + 1) % n] - p[cur])) < 0){ 567 cur = (cur + 1) % n; 568 } 569 ans = max(ans, max((p[i]-p[cur]).len2(),(p[(i+1)%n]-p[(cur+1)%n]).len2())); 570 } 571 return ans; 572 } 573 574 bool inconvex(){///判断是不是凸的 575 bool s[3]; 576 memset(s,false,sizeof(s)); 577 for(int i=0;i<n;i++){ 578 int j=(i+1)%n; 579 int k=(j+1)%n; 580 s[sgn((p[j]-p[i])^(p[k]-p[i]))+1]=true; 581 if(s[0]&&s[2]) return false; 582 } 583 return true; 584 } 585 586 int relationpoint(Point q){///判断点和任意多边形的关系 3点上 2边上 1内部 0外部 587 for(int i=0;i<n;i++){ 588 if(p[i]==q) return 3; 589 } 590 getline(); 591 for(int i=0;i<n;i++){ 592 if(l[i].pointonseg(q)) return 2; 593 } 594 int cnt=0; 595 for(int i=0;i<n;i++){ 596 int j=(i+1)%n; 597 int k=sgn((q-p[j])^(p[i]-p[j])); 598 int u=sgn(p[i].y-q.y); 599 int v=sgn(p[j].y-q.y); 600 if(k>0&&u<0&&v>=0) cnt++; 601 if(k<0&&v<0&&u>=0) cnt--; 602 } 603 return cnt!=0; 604 } 605 606 void convexcnt(Line u,polygon &po){///直线u切割凸多边形左侧 注意直线方向 607 int &top=po.n; 608 top=0; 609 for(int i=0;i<n;i++){ 610 int d1=sgn((u.e-u.s)^(p[i]-u.s)); 611 int d2=sgn((u.e-u.s)^(p[(i+1)%n]-u.s)); 612 if(d1>=0) po.p[top++]=p[i]; 613 if(d1*d2<0)po.p[top++]=u.crosspoint(Line(p[i],p[(i+1)%n])); 614 } 615 } 616 617 double getcircumference(){///得到周长 618 double sum=0; 619 for(int i=0;i<n;i++){ 620 sum+=p[i].distance(p[(i+1)%n]); 621 } 622 return sum; 623 } 624 625 double getarea(){///得到面积 626 double sum=0; 627 for(int i=0;i<n;i++){ 628 sum+=(p[i]^p[(i+1)%n]); 629 } 630 return fabs(sum)/2; 631 } 632 633 bool getdir(){///得到方向 1表示逆时针 0表示顺时针 634 double sum=0; 635 for(int i=0;i<n;i++){ 636 sum+=(p[i]^p[(i+1)%n]); 637 } 638 if(sgn(sum)>0) return 1; 639 return 0; 640 } 641 642 Point getbarycentre(){///得到重心 643 Point ret(0,0); 644 double area=0; 645 for(int i=1;i<n-1;i++){ 646 double tmp=(p[i]-p[0])^(p[i+1]-p[0]); 647 if(sgn(tmp)==0) continue; 648 area+=tmp; 649 ret.x+=(p[0].x+p[i].x+p[i+1].x)/3*tmp; 650 ret.y+=(p[0].y+p[i].y+p[i+1].y)/3*tmp; 651 } 652 if(sgn(area)) ret =ret/area; 653 return ret; 654 } 655 656 double areacircle(circle c){///多边形和圆交的面积 657 double ans=0; 658 for(int i=0;i<n;i++){ 659 int j=(i+1)%n; 660 if(sgn((p[j]-c.p)^(p[i]-c.p))>=0) ans+=c.areatriangle(p[i],p[j]); 661 else ans-=c.areatriangle(p[i],p[j]); 662 } 663 return fabs(ans); 664 } 665 666 int relationcircle(circle c){///多边形和圆的关系 2圆完全在多边形内 1圆在多边形里面,碰到了多边形的边界 0其他 667 getline(); 668 int x=2; 669 if(relationpoint(c.p)!=1) return 0; 670 for(int i=0;i<n;i++){ 671 if(c.relationseg(l[i])==2) return 0; 672 if(c.relationseg(l[i])==1) x=1; 673 } 674 return x; 675 } 676 }; 677 678 double cross(Point a,Point b,Point c){///ab x ac 679 return (b-a)^(c-a); 680 } 681 682 double dot(Point a,Point b,Point c){///ab*ac; 683 return (b-a)*(c-a); 684 } 685 686 double minRectangleCover(polygon A){///`最小矩形面积覆盖`,` A 必须是凸包(而且是逆时针顺序)`,` 测试 UVA 10173` 687 //`要特判A.n < 3的情况` 688 if(A.n < 3)return 0.0; 689 A.p[A.n] = A.p[0]; 690 double ans = -1; 691 int r = 1, p = 1, q; 692 for(int i = 0;i < A.n;i++){ 693 //`卡出离边A.p[i] - A.p[i+1]最远的点` 694 while( sgn( cross(A.p[i],A.p[i+1],A.p[r+1]) - cross(A.p[i],A.p[i+1],A.p[r]) ) >= 0 ) 695 r = (r+1)%A.n; 696 //`卡出A.p[i] - A.p[i+1]方向上正向n最远的点` 697 while(sgn( dot(A.p[i],A.p[i+1],A.p[p+1]) - dot(A.p[i],A.p[i+1],A.p[p]) ) >= 0 ) 698 p = (p+1)%A.n; 699 if(i == 0)q = p; 700 //`卡出A.p[i] - A.p[i+1]方向上负向最远的点` 701 while(sgn(dot(A.p[i],A.p[i+1],A.p[q+1]) - dot(A.p[i],A.p[i+1],A.p[q])) <= 0) 702 q = (q+1)%A.n; 703 double d = (A.p[i] - A.p[i+1]).len2(); 704 double tmp = cross(A.p[i],A.p[i+1],A.p[r]) * 705 (dot(A.p[i],A.p[i+1],A.p[p]) - dot(A.p[i],A.p[i+1],A.p[q]))/d; 706 if(ans < 0 || ans > tmp)ans = tmp; 707 } 708 return ans; 709 } 710 711 vector<Point> convexCut(const vector<Point>&ps,Point q1,Point q2){///直线切凸多边形,多边形是逆时针的,在q1q2的左侧 712 vector<Point>qs; 713 int n=ps.size(); 714 for(int i=0;i<n;i++){ 715 Point p1=ps[i],p2=ps[(i+1)%n]; 716 int d1=sgn((q2-q1)^(p1-q1)),d2=sgn((q2-q1)^(p2-q1)); 717 if(d1>=0) qs.push_back(p1); 718 if(d1*d2<0) qs.push_back(Line(p1,p2).crosspoint(Line(q1,q2))); 719 } 720 return qs; 721 } 722 723 struct halfplane:public Line{ 724 double angle; 725 halfplane(){} 726 halfplane(Point _s,Point _e){///表示向量s->e逆时针(左侧)的半平面 727 s=_s; 728 e=_e; 729 } 730 halfplane(Line v){ 731 s=v.s; 732 e=v.e; 733 } 734 void calcangle(){ 735 angle=atan2(e.y-s.y,e.x-s.x); 736 } 737 bool operator<(const halfplane &b)const{ 738 return angle<b.angle; 739 } 740 }; 741 742 struct halfplanes{ 743 int n; 744 halfplane hp[2020]; 745 Point p[2020]; 746 int que[2020]; 747 int st,ed; 748 void push(halfplane tmp){ 749 hp[n++]=tmp; 750 } 751 752 void unique(){///去重 753 int m=1; 754 for(int i=1;i<n;i++){ 755 if(sgn(hp[i].angle-hp[i-1].angle)!=0) hp[m++]=hp[i]; 756 else if(sgn((hp[m-1].e-hp[m-1].s)^(hp[i].s-hp[m-1].s))>0) hp[m-1]=hp[i]; 757 } 758 n=m; 759 } 760 bool halfplaneinsert(){ 761 for(int i=0;i<n;i++) hp[i].calcangle(); 762 sort(hp,hp+n); 763 unique(); 764 que[st=0]=0; 765 que[ed=1]=1; 766 p[1]=hp[0].crosspoint(hp[1]); 767 for(int i=2;i<n;i++){ 768 while(st<ed&&sgn((hp[i].e-hp[i].s)^(p[ed]-hp[i].s))<0) ed--; 769 while(st<ed&&sgn((hp[i].e-hp[i].s)^(p[st+1]-hp[i].s))<0) st++; 770 que[++ed]=i; 771 if(hp[i].parallel(hp[que[ed-1]])) return false; 772 p[ed]=hp[i].crosspoint(hp[que[ed-1]]); 773 } 774 while(st<ed&&sgn((hp[que[st]].e-hp[que[st]].s)^(p[ed]-hp[que[st]].s))<0) ed--; 775 while(st<ed&&sgn((hp[que[ed]].e-hp[que[ed]].s)^(p[st+1]-hp[que[ed]].s))<0) st++; 776 if(st+1>=ed) return false; 777 return true; 778 } 779 780 void getconvex(polygon &con){///得到最后半平面交得到的凸多边形,要先调用halfplaneinsert()且返回true 781 p[st]=hp[que[st]].crosspoint(hp[que[ed]]); 782 con.n=ed-st+1; 783 for(int j=st,i=0;j<=ed;i++,j++){ 784 con.p[i]=p[j]; 785 } 786 } 787 }; 788 789 struct circles{ 790 circle c[1010]; 791 double ans[1010];///ans[i]表示被覆盖了i次的面积 792 double pre[1010]; 793 int n; 794 circles(){} 795 void add(circle cc){ 796 c[n++]=cc; 797 } 798 799 bool inner(circle x,circle y){///x包含在y中 800 if(x.relationcircle(y)!=1) return 0; 801 return sgn(x.r-y.r)<=0?1:0; 802 } 803 804 void init_or(){///圆的面积并去掉内含的圆 805 bool mark[1010]={0}; 806 int i,j,k=0; 807 for(i=0;i<n;i++){ 808 for(j=0;j<n;j++){ 809 if(i!=j&&!mark[j]){ 810 if(c[i]==c[j]||inner(c[i],c[j])) break; 811 } 812 } 813 if(j<n) mark[i]=1; 814 } 815 for(i=0;i<n;i++){ 816 if(!mark[i]) c[k++]=c[i]; 817 } 818 n=k; 819 } 820 821 void init_add(){///圆的面积交去掉内含的圆 822 int i,j,k; 823 bool mark[1010]={0}; 824 for(i=0;i<n;i++){ 825 for(int j=0;j<n;j++){ 826 if(i!=j&&!mark[j]){ 827 if((c[i]==c[j])||inner(c[j],c[i])) break; 828 } 829 } 830 if(j<n) mark[i]=1; 831 } 832 for(i=0;i<n;i++){ 833 if(!mark[i]){ 834 c[k++]=c[i]; 835 } 836 } 837 n=k; 838 } 839 840 double areaarc(double th,double r){///半径为r的圆,弧度为th,对应的弓形的面积 841 return 0.5*r*r*(th-sin(th)); 842 } 843 844 845 void getarea(){ 846 memset(ans,0,sizeof(ans)); 847 vector<pair<double,int> >v; 848 for(int i=0;i<n;i++){ 849 v.clear(); 850 v.push_back(make_pair(-PI,1)); 851 v.push_back(make_pair(PI,-1)); 852 for(int j=0;j<n;j++){ 853 if(i!=j){ 854 Point q=(c[j].p-c[i].p); 855 double ab=q.len(),ac=c[i].r,bc=c[j].r; 856 if(sgn(ab+ac-bc)<=0){ 857 v.push_back(make_pair(-PI,1)); 858 v.push_back(make_pair(PI,-1)); 859 continue; 860 } 861 if(sgn(ab+bc-ac)<=0)continue; 862 if(sgn(ab-ac-bc)>0) continue; 863 double th=atan2(q.y,q.x),fai=acos((ac*ac+ab*ab-bc*bc)/(2.0*ac*ab)); 864 double a0=th-fai; 865 if(sgn(a0+PI)<0) a0+=2*PI; 866 double a1=th+fai; 867 if(sgn(a1-PI)>0) a1-=2*PI; 868 if(sgn(a0-a1)>0){ 869 v.push_back(make_pair(a0,1)); 870 v.push_back(make_pair(PI,-1)); 871 v.push_back(make_pair(-PI,1)); 872 v.push_back(make_pair(a1,-1)); 873 } 874 else{ 875 v.push_back(make_pair(a0,1)); 876 v.push_back(make_pair(a1,-1)); 877 } 878 } 879 sort(v.begin(),v.end()); 880 int cur=0; 881 for(int j=0;j<v.size();j++){ 882 if(cur&&sgn(v[j].first-pre[cur])){ 883 ans[cur]+=areaarc(v[j].first-pre[cur],c[i].r); 884 ans[cur]+=0.5*(Point(c[i].p.x+c[i].r*cos(pre[cur]),c[i].p.y+c[i].r*sin(pre[cur]))^Point(c[i].p.x+c[i].r*cos(v[j].first),c[i].p.y+c[i].r*sin(v[j].first))); 885 } 886 cur+=v[j].second; 887 pre[cur]=v[j].first; 888 } 889 } 890 } 891 for(int i=1;i<n;i++){ 892 ans[i]-=ans[i+1]; 893 } 894 } 895 }; 896 897 898 899 bool Check(Line a,Line b){ 900 if(sgn((a.s-a.e)^(b.s-a.e))*sgn((a.s-a.e)^(b.e-a.e))>0) return false; 901 if(sgn((b.s-b.e)^(a.s-b.e))*sgn((b.s-b.e)^(a.e-b.e))>0) return false; 902 if(sgn(max(a.s.x,a.e.x)-min(b.s.x,b.e.x))>=0&&sgn(max(b.s.x,b.e.x)-min(a.s.x,a.e.x))>=0 903 &&sgn(max(a.s.y,a.e.y)-min(b.s.y,b.e.y))>=0&&sgn(max(b.s.y,b.e.y)-min(a.s.y,a.e.y))>=0) 904 return true; 905 else return false; 906 } 907 908 int n; 909 polygon poly,tmp; 910 911 912 double dis(Point a,Point b){ 913 return a.distance(b); 914 } 915 916 917 void change(Point a,Point b,Point &c,Point &d,double p)///将线段ab往左移动距离p 918 { 919 double len = a.distance(b); 920 double dx = (a.y - b.y)*p/len; 921 double dy = (b.x - a.x)*p/len; 922 c.x = a.x + dx; c.y = a.y + dy; 923 d.x = b.x + dx; d.y = b.y + dy; 924 } 925 926 void get_equation(Point p1,Point p2,double &a,double &b,double &c){///通过两点求直线方程 927 a=p2.y-p1.y; 928 b=p1.x-p2.x; 929 c=p2.x*p1.y-p1.x*p2.y; 930 } 931 932 Point Intersection(Point p1,Point p2,double a,double b,double c){///求交点 933 double u = fabs(a*p1.x + b*p1.y + c); 934 double v = fabs(a*p2.x + b*p2.y + c); 935 Point t; 936 t.x = (p1.x*v + p2.x*u)/(u+v); 937 t.y = (p1.y*v + p2.y*u)/(u+v); 938 return t; 939 } 940 941 942 int main(){ 943 int n; 944 while(~scanf("%d",&n)){ 945 poly.input(n); 946 poly.getconvex(tmp); 947 printf("%lld\n",(long long)tmp.rotating_calipers()); 948 } 949 return 0; 950 }
posted on 2019-05-07 11:14 Fighting_sh 阅读(349) 评论(0) 编辑 收藏 举报