Codeforces Round #500 (Div. 2) [based on EJOI]

Codeforces Round #500 (Div. 2) [based on EJOI]

https://codeforces.com/contest/1013

A

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 #define lson l,mid,rt<<1
 4 #define rson mid+1,r,rt<<1|1
 5 #define IT set<node>::iterator
 6 #define sqr(x) ((x)*(x))
 7 #define pb push_back
 8 #define eb emplace_back
 9 #define maxn 200005
10 #define eps 1e-8
11 #define pi acos(-1.0)
12 #define rep(k,i,j) for(int k=i;k<j;k++)
13 typedef long long ll;
14 typedef pair<int,int> pii;
15 typedef pair<ll,ll>pll;
16 typedef pair<ll,int> pli;
17 typedef pair<pair<int,string>,pii> ppp;
18 typedef unsigned long long ull;
19 const long long MOD=1e9+7;
20 const double oula=0.57721566490153286060651209;
21 using namespace std;
22 
23 
24 int n,ans1,ans2;
25 
26 int main(){
27     std::ios::sync_with_stdio(false);
28     cin>>n;
29     int x;
30     for(int i=1;i<=n;i++){
31         cin>>x;
32         ans1+=x;
33     }
34     for(int i=1;i<=n;i++){
35         cin>>x;
36         ans2+=x;
37     }
38     if(ans1>=ans2) puts("YES");
39     else puts("NO");
40 }
View Code

 

B

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 #define lson l,mid,rt<<1
 4 #define rson mid+1,r,rt<<1|1
 5 #define IT set<node>::iterator
 6 #define sqr(x) ((x)*(x))
 7 #define pb push_back
 8 #define eb emplace_back
 9 #define maxn 200005
10 #define eps 1e-8
11 #define pi acos(-1.0)
12 #define rep(k,i,j) for(int k=i;k<j;k++)
13 typedef long long ll;
14 typedef pair<int,int> pii;
15 typedef pair<ll,ll>pll;
16 typedef pair<ll,int> pli;
17 typedef pair<pair<int,string>,pii> ppp;
18 typedef unsigned long long ull;
19 const long long MOD=1e9+7;
20 const double oula=0.57721566490153286060651209;
21 using namespace std;
22 
23 
24 int n,x;
25 int a[100005];
26 int b[100005];
27 set<int>se1,se2,se3;
28 
29 int main(){
30     std::ios::sync_with_stdio(false);
31     cin>>n>>x;
32     for(int i=1;i<=n;i++){
33         cin>>a[i];
34         b[i]=a[i]&x;
35         se1.insert(a[i]);
36         se2.insert(b[i]);
37     }
38     if(se1.size()!=n){
39         cout<<0<<endl;
40         return 0;
41     }
42     for(int i=1;i<=n;i++){
43         se1.erase(a[i]);
44         se1.insert(b[i]);
45         if(se1.size()!=n){
46             cout<<1<<endl;
47             return 0;
48         }
49         se1.erase(b[i]);
50         se1.insert(a[i]);
51     }
52     if(se2.size()!=n){
53         cout<<2<<endl;
54         return 0;
55     }
56     cout<<-1<<endl;
57 }
View Code

 

C

题意:给你2*n个值,组成n个点,问能覆盖这n个点的最小矩形面积

思路:枚举长度为n的区间,这段区间作为x坐标的范围,然后将这段区间的差值与剩下部分的差值相乘取最小值

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 #define lson l,mid,rt<<1
 4 #define rson mid+1,r,rt<<1|1
 5 #define IT set<node>::iterator
 6 #define sqr(x) ((x)*(x))
 7 #define pb push_back
 8 #define eb emplace_back
 9 #define maxn 200005
10 #define eps 1e-8
11 #define pi acos(-1.0)
12 #define rep(k,i,j) for(int k=i;k<j;k++)
13 typedef long long ll;
14 typedef pair<int,int> pii;
15 typedef pair<ll,ll>pll;
16 typedef pair<ll,int> pli;
17 typedef pair<pair<int,string>,pii> ppp;
18 typedef unsigned long long ull;
19 const long long MOD=1e9+7;
20 const double oula=0.57721566490153286060651209;
21 using namespace std;
22 
23 
24 int n;
25 ll a[maxn];
26 
27 int main(){
28     std::ios::sync_with_stdio(false);
29     cin>>n;
30     n*=2;
31     for(int i=1;i<=n;i++) cin>>a[i];
32     sort(a+1,a+n+1);
33     ll ans=(a[n/2]-a[1])*(a[n]-a[n/2+1]);
34     for(int i=2;i<=n/2+1;i++){
35         ans=min(ans,(a[n]-a[1])*(a[i+n/2-1]-a[i]));
36     }
37     cout<<ans<<endl;
38 }
View Code

 

D

题意:有一个n*m的矩形,一开始有q个格子上被标记。对于任意两行两列,如果交汇的四个格子中有三个被标记,那么第4个也会被标记。求至少需要手动标记几个格子,才能让整个矩形内的格子都被标记。

题意:当(x1,y1),(x1,y2),(x2,y1)被标记时,(x2,y2)也会被标记,所以用并查集维护,判断有多少个点是没有被标记的

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 #define lson l,mid,rt<<1
 4 #define rson mid+1,r,rt<<1|1
 5 #define IT set<node>::iterator
 6 #define sqr(x) ((x)*(x))
 7 #define pb push_back
 8 #define eb emplace_back
 9 #define maxn 200005
10 #define eps 1e-8
11 #define pi acos(-1.0)
12 #define rep(k,i,j) for(int k=i;k<j;k++)
13 typedef long long ll;
14 typedef pair<int,int> pii;
15 typedef pair<ll,ll>pll;
16 typedef pair<ll,int> pli;
17 typedef pair<pair<int,string>,pii> ppp;
18 typedef unsigned long long ull;
19 const long long MOD=1e9+7;
20 const double oula=0.57721566490153286060651209;
21 using namespace std;
22 
23 
24 int n,m,q;
25 int fa[maxn*2];
26 
27 int Find(int x){
28     int r=x,y;
29     while(x!=fa[x]){
30         x=fa[x];
31     }
32     while(r!=x){
33         y=fa[r];
34         fa[r]=x;
35         r=y;
36     }
37     return x;
38 }
39 
40 void join(int x,int y){
41     int xx=Find(x);
42     int yy=Find(y);
43     if(xx!=yy){
44         fa[xx]=yy;
45     }
46 }
47 
48 int main(){
49     std::ios::sync_with_stdio(false);
50     cin>>n>>m>>q;
51     int x,y;
52     for(int i=1;i<=n+m;i++) fa[i]=i;
53     for(int i=1;i<=q;i++){
54         cin>>x>>y;
55         join(x,y+n);
56     }
57     int ans=0;
58     for(int i=1;i<=n+m;i++){
59         if(fa[i]==i){
60             ans++;
61         }
62     }
63     cout<<ans-1<<endl;
64 }
View Code

 

E

题意:给你n个数,你一次操作可以把某一个数减一,使任意k个数严格大于它旁边的两个数,问最少需要几次操作。输出1<=k<=(n+1)/2时的答案。

思路: dp[i][j][0]表示表示前i个数有j个满足条件,i、i-1都不满足条件的最少操作数

    dp[i][j][1]表示表示前i个数有j个满足条件,i满足条件的最少操作数

    dp[i][j][2]表示表示前i个数有j个满足条件,i-1满足条件的最少操作数

然后进行状态转移:

  dp[i][j][2]=dp[i-1][j][1]+max(0,a[i]-a[i-1]+1);
  dp[i][j][0]=min(dp[i-1][j][0],dp[i-1][j][2]);
  dp[i][j][1]=min(dp[i-1][j-1][0]+max(0,a[i-1]-a[i]+1),dp[i-1][j-1][2]+max(0,min(a[i-1],a[i-2]-1)-a[i]+1));

        dp[i][j][1]分为两种情况:

         1、前两个都不满足条件,那么i-1就是原来的数,即没有被操作过,需要的操作数就是max(0,a[i-1]-a[i]+1)

         2、i-2满足条件,那么i-1已经变成了min(a[i-1],a[i-2]-1),还需要的操作数就是max(0,min(a[i-1],a[i-2]-1)-a[i]+1)

 因为转移只用到了dp[i-1][j],dp[i-1][j-1],所以可以用滚动数组优化

参考博客:https://ouuan.blog.luogu.org/solution-cf1012c

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 #define lson l,mid,rt<<1
 4 #define rson mid+1,r,rt<<1|1
 5 #define IT set<node>::iterator
 6 #define sqr(x) ((x)*(x))
 7 #define pb push_back
 8 #define eb emplace_back
 9 #define maxn 200005
10 #define eps 1e-8
11 #define pi acos(-1.0)
12 #define rep(k,i,j) for(int k=i;k<j;k++)
13 typedef long long ll;
14 typedef pair<int,int> pii;
15 typedef pair<ll,ll>pll;
16 typedef pair<ll,int> pli;
17 typedef pair<pair<int,string>,pii> ppp;
18 typedef unsigned long long ull;
19 const long long MOD=1e9+7;
20 const double oula=0.57721566490153286060651209;
21 using namespace std;
22 
23 
24 int n;
25 int dp[2505][3];
26 int a[5005];
27 
28 int main(){
29     std::ios::sync_with_stdio(false);
30     cin>>n;
31     for(int i=1;i<=n;i++) cin>>a[i];
32     for(int i=0;i<=2;i++){
33         for(int j=0;j<=(n+1)/2;j++){
34             dp[j][i]=0x3f3f3f3f;
35         }
36     }
37     dp[0][0]=dp[1][1]=0;
38     for(int i=2;i<=n;i++){
39         for(int j=(i+1)/2;j>=1;j--){
40             dp[j][2]=dp[j][1]+max(0,a[i]-a[i-1]+1);
41             dp[j][0]=min(dp[j][0],dp[j][2]);
42             dp[j][1]=min(dp[j-1][0]+max(0,a[i-1]-a[i]+1),dp[j-1][2]+max(0,min(a[i-1],a[i-2]-1)-a[i]+1));
43         }
44     }
45     for(int i=1;i<=(n+1)/2;i++){
46         cout<<min(dp[i][0],min(dp[i][1],dp[i][2]))<<" ";
47     }
48 }
View Code

 

posted on 2019-03-25 18:47  Fighting_sh  阅读(225)  评论(0编辑  收藏  举报

导航