Honeycomb
Honeycomb
http://codeforces.com/gym/102028/problem/F
A honeycomb is a mass wax cells built by honey bees, which can be described as a regular tiling of the Euclidean plane, in which three hexagons meet at each internal vertex. The internal angle of a hexagon is 120120 degrees, so three hexagons at a point make a full 360360degrees. The following figure shows a complete honeycomb with 33 rows and 44 columns.
![](http://codeforces.com/predownloaded/aa/76/aa76c4725bca4dd5eda2363923988bcdeb27a4b0.png)
Here we guarantee that the first cell in the second column always locates in the bottom right side of the first cell in the first column, as shown above. A general honeycomb may, on the basis of a complete honeycomb, lose some walls between adjacent cells, but the honeycomb is still in a closed form. A possible case looks like the figure below.
![](http://codeforces.com/predownloaded/9f/76/9f76921623901db7ee8273d0c05e8cc078a954a8.png)
Hamilton is a brave bee living in a general honeycomb. Now he wants to move from a starting point to a specified destination. The image below gives a feasible path in a 3×43×4 honeycomb from the 11-st cell in the 22-nd column to the 11-st cell in the 44-th column.
![](http://codeforces.com/predownloaded/6d/df/6ddf661f7c05661432019464c982f901f7985280.png)
Please help him find the minimum number of cells that a feasible path has to pass through (including the starting point and the destination) from the specified starting point to the destination.
The input contains several test cases, and the first line contains a positive integer TT indicating the number of test cases which is up to 104104.
For each test case, the first line contains two integers rr and cc indicating the number of rows and the number of columns of the honeycomb, where 2≤r,c≤1032≤r,c≤103.
The following (4r+3)(4r+3) lines describe the whole given honeycomb, where each line contains at most (6c+3)(6c+3) characters. Odd lines contain grid vertices represented as plus signs ("+") and zero or more horizontal edges, while even lines contain two or more diagonal edges. Specifically, a cell is described as 66 vertices and at most 66 edges. Its upper boundary or lower boundary is represented as three consecutive minus signs ("-"). Each one of its diagonal edges, if exists, is a single forward slash ("/") or a single backslash ("\") character. All edge characters will be placed exactly between the corresponding vertices. At the center of the starting cell (resp. the destination), a capital "S" (resp. a capital "T") as a special character is used to indicate the special cell. All other characters will be space characters. Note that if any input line could contain trailing whitespace, that whitespace will be omitted.
We guarantee that all outermost wall exist so that the given honeycomb is closed, and exactly one "S" and one "T" appear in the given honeycomb. Besides, the sum of r⋅cr⋅c in all test cases is up to 2×1062×106.
For each test case, output a line containing the minimum number of cells that Hamilton has to visit moving from the starting cell ("S") to the destination ("T"), including the starting cell and the destination. If no feasible path exists, output -1 instead.
1 3 4 +---+ +---+ / \ / \ + +---+ +---+ \ \ / \ + + S +---+ T + / \ / / + +---+ + + \ \ / \ +---+ +---+ + / / + +---+ + + \ / \ +---+ +---+ + \ / \ / +---+ +---+
7
比赛的时候煞笔了,没写出来。。。
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
1 #include<iostream> 2 #include<cstring> 3 #include<string> 4 #include<algorithm> 5 #include<cmath> 6 #include<queue> 7 #include<stack> 8 #include<cstdio> 9 #include<vector> 10 using namespace std; 11 12 int n,m,fanwei; 13 struct sair{ 14 int pos,step; 15 }; 16 17 char str[4105][6105]; 18 int book[2000005]; 19 vector<int> ve[2000005]; 20 21 void bfs(int ss,int tt){ 22 sair s,e; 23 queue<sair>Q; 24 s.pos=ss,s.step=1; 25 book[ss]=1; 26 Q.push(s); 27 while(!Q.empty()){ 28 s=Q.front(); 29 Q.pop(); 30 for(int i=0;i<ve[s.pos].size();i++){ 31 if(ve[s.pos][i]>=1&&ve[s.pos][i]<=fanwei&&!book[ve[s.pos][i]]){ 32 book[ve[s.pos][i]]=1; 33 e.pos=ve[s.pos][i]; 34 e.step=s.step+1; 35 if(e.pos==tt){ 36 printf("%d\n",e.step); 37 return; 38 } 39 Q.push(e); 40 } 41 } 42 } 43 printf("-1\n"); 44 } 45 46 void join(int x,int y){ 47 ve[x].push_back(y); 48 ve[y].push_back(x); 49 ////如果wa的话,加单向边试试?? 50 } 51 52 int main(){ 53 int T; 54 scanf("%d",&T); 55 while(T--){ 56 scanf("%d %d%*c",&n,&m); 57 int tmp=n*m; 58 fanwei=tmp; 59 for(int i=0;i<=tmp;i++){ 60 book[i]=0; 61 ve[i].clear(); 62 } 63 for(int i=0;i<n*4+3;i++){ 64 gets(str[i]); 65 } 66 67 //最后三行不用判断 68 int nn=n*4; 69 int co; 70 for(int i=0;i<nn;i++){ 71 int len=strlen(str[i]); 72 int j=0; 73 if(i%4==0){ 74 j=4; 75 co=1; 76 while(j<len){ 77 if(str[i][j]==' '){ 78 join((i/4-1)*m+co,i/4*m+co); 79 80 } 81 co+=2; 82 j+=12; 83 } 84 } 85 else if(i%4==1){ 86 j=1; 87 co=1; 88 while(j<len){ 89 if(str[i][j]==' '){ 90 join((i/4-1)*m+co-1,i/4*m+co); 91 } 92 j+=12; 93 co+=2; 94 } 95 j=7; 96 co=1; 97 while(j<len){ 98 if(str[i][j]==' '){ 99 join((i/4-1)*m+co+1,i/4*m+co); 100 } 101 j+=12; 102 co+=2; 103 } 104 } 105 else if(i%4==2){ 106 co=2; 107 j=10; 108 while(j<len){ 109 if(str[i][j]==' '){ 110 join((i/4-1)*m+co,i/4*m+co); 111 } 112 co+=2; 113 j+=12; 114 } 115 116 } 117 else if(i%4==3){ 118 j=1; 119 co=1; 120 while(j<len){ 121 if(str[i][j]==' '){ 122 join(i/4*m+co,i/4*m+co-1); 123 } 124 j+=12; 125 co+=2; 126 } 127 j=7; 128 co=2; 129 while(j<len){ 130 if(str[i][j]==' '){ 131 join(i/4*m+co,i/4*m+co-1); 132 133 } 134 j+=12; 135 co+=2; 136 } 137 } 138 } 139 int s=-1,t=-1; 140 nn=n*4; 141 int xxx=0; 142 for(int i=2;i<nn;i+=4){ 143 int len=strlen(str[i]); 144 int j=4; 145 co=xxx*m+1; 146 xxx++; 147 while(j<len){ 148 if(str[i][j]=='S'){ 149 s=co; 150 } 151 else if(str[i][j]=='T'){ 152 t=co; 153 } 154 j+=12; 155 co+=2; 156 } 157 } 158 nn+=2; 159 xxx=0; 160 for(int i=4;i<nn;i+=4){ 161 int len=strlen(str[i]); 162 int j=10; 163 co=xxx*m+2; 164 xxx++; 165 while(j<len){ 166 if(str[i][j]=='S'){ 167 s=co; 168 } 169 else if(str[i][j]=='T'){ 170 t=co; 171 } 172 j+=12; 173 co+=2; 174 } 175 } 176 //cout<<s<<" "<<t<<endl; 177 bfs(s,t); 178 } 179 180 // system("pause"); 181 182 return 0; 183 } 184 /* 185 100 186 3 4 187 +---+ +---+ 188 / \ / \ 189 + +---+ +---+ 190 \ \ / \ 191 + + S +---+ T + 192 / \ / / 193 + +---+ + + 194 \ \ / \ 195 +---+ +---+ + 196 / / 197 + +---+ + + 198 \ / \ 199 +---+ +---+ + 200 \ / \ / 201 +---+ +---+ 202 203 3 4 204 +---+ +---+ 205 / \ / \ 206 + +---+ +---+ 207 \ \ / \ 208 + + S +---+ + 209 / \ / / 210 + +---+ + + 211 \ \ / \ 212 +---+ T +---+ + 213 / / / 214 + +---+ + + 215 \ / \ 216 +---+ +---+ + 217 \ / \ / 218 +---+ +---+ 219 220 3 3 221 +---+ +---+ 222 / \ / \ 223 + +---+ + 224 \ \ / 225 + + S +---+ 226 / \ / \ 227 + +---+ + 228 \ \ / 229 +---+ T +---+ 230 / / \ 231 + +---+ + 232 \ / 233 +---+ +---+ 234 \ / 235 +---+ 236 */
posted on 2018-12-08 17:55 Fighting_sh 阅读(462) 评论(0) 编辑 收藏 举报