hdu 1028 整数的划分问题
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.
"The second problem is, given an positive integer N, we define an equation like this:
N=a[1]+a[2]+a[3]+...+a[m];
a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
4 = 4;
4 = 3 + 1;
4 = 2 + 2;
4 = 2 + 1 + 1;
4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
"The second problem is, given an positive integer N, we define an equation like this:
N=a[1]+a[2]+a[3]+...+a[m];
a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
4 = 4;
4 = 3 + 1;
4 = 2 + 2;
4 = 2 + 1 + 1;
4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
Sample Input
4
10
20
Sample Output
5
42
627
思路
假设partition(n,m):正整数n的划分中加数小于等于m的所有划分数。
一般情况下,有:
partion(n, m) = partition(n, m-1) + partition(n-m, m);
例如:
比如partition(7,4) = partition(7,3)+partition(3,4),为什么会加上partition(3,4)呢?
4+3, 4+2+1,4+1+1+1这一行的总个数就是partition(3,4),
相当于把最前面固定的4去掉,剩余项的和等于7-4=3的总个数,但同时剩余项的加数要小于4,因为这些数排在删掉的4的后面。
特殊情况(递归终止条件):
(1)partition(n,m) = partition(n,n-1) + 1
n<=m时,有 partition(n,m) = partition(n,n-1) + 1,因为n的划分不能有大于n的加数
(2)partition(1,n) = 1
n = 1时,不管m有多大,整数1都只有1个划分
(3)partition(n,1) = 1
对任意整数n,加数小于等于1的划分只有1个,即1+1+....+1
使用记忆化搜索优化递归次数,得到如下代码:
1 #include <iostream> 2 #include <vector> 3 #include <stdio.h> 4 #include <string> 5 6 using namespace std; 7 8 #define MAXN 150 9 10 vector<vector<int>> memo; 11 12 int partition(int n, int m) 13 { 14 if(n < 1 || m < 1) 15 return 0; 16 17 if(n == 1 || m == 1) 18 return 1; 19 20 if(memo[n][m] != -1) 21 return memo[n][m]; 22 23 if(n <= m) 24 memo[n][m] = 1+partition(n,n-1); 25 else 26 memo[n][m] = partition(n,m-1) + partition(n-m,m); 27 28 return memo[n][m]; 29 30 } 31 32 int main() 33 { 34 int n; 35 while(scanf("%d", &n) != EOF) 36 { 37 memo = vector<vector<int>>(MAXN, vector<int>(MAXN, -1)); 38 printf("%d\n", partition(n,n)); 39 } 40 41 return 0; 42 }