dijkstra算法为什么不能有负边?
因为Dijkstra算法在计算最短路径时,不会因为负边的出现而更新已经计算过(收录过)的顶点的路径长度,
这样一来,在存在负边的图中,就可能有某些顶点最终计算出的路径长度不是最短的长度。
假设前两个数字表示顶点,第三个数字表示边的权值或路径长度,
考虑有三个顶点,三条边:(1,2,1),(1,3,2),(2,3,-3),最终计算出的路径长度是(1,2,1),(1,3,-2),但明显存在(1,2,-1)这条更短的路径。
标签:
图论
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
· [.NET]调用本地 Deepseek 模型
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· PowerShell开发游戏 · 打蜜蜂
· 在鹅厂做java开发是什么体验
· 百万级群聊的设计实践
· WPF到Web的无缝过渡:英雄联盟客户端的OpenSilver迁移实战
· 永远不要相信用户的输入:从 SQL 注入攻防看输入验证的重要性
2018-07-25 C++:对象移动、右值引用详解