POJ 2488 A Knight's Journey
/* A Knight's Journey Time Limit: 1000MS Memory Limit: 65536K Description Background The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans? Problem Find a path such that the knight visits every square once. The knight can start and end on any square of the board. Input The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . . Output The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number. If no such path exist, you should output impossible on a single line. Sample Input 3 1 1 2 3 4 3 Sample Output Scenario #1: A1 Scenario #2: impossible Scenario #3: A1B3C1A2B4C2A3B1C3A4B2C4 */ /* 本题为POJ2488 ,之前A过一次所以再写一遍只用了1个小时左右 大概意思为棋盘上的马走日.. 能遍历棋盘就输出路线 用到了DFS回溯的思想,注意输出是字典序输出,也就是每走一步都从左下角开始优先遍历 */ #include<stdio.h> #include<stdlib.h> #include<string.h> int dicy[8] = {-2,-2,-1,-1,1,1,2,2}; int dicx[8] = {-1,1,-2,2,-2,2,-1,1}; //字典树排序 注意优先顺序 int bingo = 0; int visit[100][100]; int trackx[200],tracky[200]; int x,y; int length; int ok(int n,int m) //判断是否在棋盘界内 { if(n <= x && n >= 1 && m >= 1 && m <= y) return 1; else return 0; } void dfs(int m,int n,int length) //深搜 { trackx[length] = m; tracky[length] = n; if(length == x*y) { bingo = 1; for(int j = 1 ; j <= length ; j++) //输出 { printf("%c%d",tracky[j]+'A'-1,trackx[j]); } printf("\n\n"); } for(int i = 0 ; i < 8 ; i++) { if(ok(m+dicx[i],n+dicy[i]) && !visit[m+dicx[i]][n+dicy[i]] && !bingo) { visit[m+dicx[i]][n+dicy[i]] = 1; dfs(m+dicx[i],n+dicy[i],length+1); //visit[m+dicx[i]][n+dicy[i]] = 0; //回溯 } } } int main() { int n; scanf("%d",&n); for(int k = 1 ; k <= n ; k++) { bingo = 0; for(int m = 0 ; m < 20 ; m++) { for(int n = 0 ; n < 20 ; n++) { visit[m][n] = 0 ; } } scanf("%d%d",&x,&y); // 输入x,y x为列数,y为行数 trackx[1] = 1; tracky[1] = 1; visit[1][1] = 1; printf("Scenario #%d:\n",k); dfs(1,1,1); if(!bingo) { printf("impossible\n\n"); } } return 0; }