HDU4674 Trip Advisor

Problem Description
There is a strange country somewhere which its transportation network was built following some weird rules: Consider the transportation network as a connected undirected graph G with N nodes and M edges(nodes indicate cities,and people can travel from cities to cities by roads connecting them),the condition that every node in G is in at most one simple cycle holds.
One day Q people of the country want to make a travel, i_th people is located at city Ui, wants to move to city Vi(Ui can be equal to Vi),and he especially loves city Pi,so he wonders if there is a path that:

1. starts at Ui;
2. ends at Vi;
3. for every pair of adjacent cities in path,there is a road connecting them.
4. visits every city at most once.
5. visits city Pi;

As a trip advisor,your task is to tell everybody whether there is a path satsifying all his requirements.
 


Input
The input contains several test cases, terminated by EOF. Most of test cases are rather small.
Each testcase contains M + Q + 2 lines. first line contains two integers N, M (1 <= N <= 100000, 1 <= M <= 150000), the number of cities and roads; next M lines each contains two integer b, e indicates that there is a bidirectional-road connecting city b and city e;next line an integer Q (1 ≤ Q ≤ 100000) indicating number of people in that country that want to make a travel, next Q lines each contains three integers Ui, Vi, Pi, denotes the query as we mentioned above.
 


Output
For each test case output Q lines, for i-th query, if there exists such path, output one line "Yes" without quotes, otherwise output one line "No" without quotes.
 


Sample Input
6 7 1 2 1 2 3 4 2 4 5 6 5 6 4 5 5 1 6 3 1 6 4 1 2 5 2 2 2 2 2 3
 


Sample Output
No Yes No Yes No
 


Source
 
  1 //#pragma comment(linker, "/STACK:65536000")
  2 #include <iostream>
  3 #include <stdio.h>
  4 #include <string.h>
  5 #include <vector>
  6 #include <map>
  7 #include <math.h>
  8 #include <queue>
  9 #include <set>
 10 #include <algorithm>
 11 #define clr(a,b) memset(a,b,sizeof(a))
 12 #define mpr(a,b) make_pair(a,b)
 13 #define ll long long
 14 #define eps 1e-6
 15 using namespace std;
 16 
 17 const int N=100005,M=300005;
 18 
 19 /*
 20 * HDU4674
 21 * 一个无向图,每个点最多只属于一个简单环,询问从a到b的简单路径能不能路过c
 22 * 离线处理,先缩点,假设缩点完后a为A,b为B,c为C
 23 * 对每个询问分别求出lca(A,B),lca(A,C),lca(B,C)
 24 * 还要判断两个点求lca的时候,对lca的那个点,进出的联通块分别是哪个点,这个
 25 * 在做完一边lca后再dfs一边就好了
 26 * come记录从父亲节点进入这个联通块的是哪个点
 27 * out数组在dfs中记录当前祖先的状态
 28 * gra数组用来缩点建图,first保存连到下一个联通块的编号,
 29                second保存从该联通块该边连出去的是哪个点
 30 * qu数组用来lca询问
 31 * tlca记录每个lca的值
 32 * pt表示两个点连到lca的时候,进出lca那个联通块的点,-1说明就在lca上
 33 */
 34 int n,m,q,eid,id,now,top;
 35 int head[N],ed[M],nxt[M];
 36 int dfn[N],low[N],gid[N];
 37 int sta[N],block[N];
 38 vector<pair<int,int> >gra[N],qu[N];
 39 int f[N],vis[N],come[N],out[N],fa[N];
 40 int tlca[3*N],pt[3*N][2];
 41 int aa[N],bb[N],cc[N];
 42 
 43 int findfa(int s){return s==fa[s]?s:fa[s]=findfa(fa[s]);}
 44 
 45 void addedge(int s,int e){
 46      ed[eid]=e;nxt[eid]=head[s];head[s]=eid++;
 47 }
 48 
 49 void tarjan(int s,int f,int b){
 50      dfn[s]=low[s]=++now;
 51      sta[top++]=s;block[s]=b;
 52      for(int i=head[s];~i;i=nxt[i]){
 53           int e=ed[i];
 54           if(i==f||i==(f^1))continue;
 55           if(!dfn[e]){
 56                tarjan(e,i,b);
 57                low[s]=min(low[s],low[e]);
 58           }else
 59                low[s]=min(low[s],dfn[e]);
 60      }
 61      if(low[s]==dfn[s]){
 62           id++;
 63           while(top){
 64                int k=sta[--top];
 65                gid[k]=id;
 66                if(k==s)return ;
 67           }
 68      }
 69 }
 70 
 71 void lca(int s,int f){
 72      fa[s]=s;
 73      for(int i=0;i<(int)gra[s].size();i++){
 74           int e=gra[s][i].first;
 75           if(e==f)continue;
 76           lca(e,s);
 77           fa[findfa(e)]=s;
 78      }
 79      vis[s]=1;
 80      for(int i=0;i<(int)qu[s].size();i++){
 81           int e=qu[s][i].first,d=qu[s][i].second;
 82           if(vis[e])tlca[d]=findfa(e);
 83      }
 84 }
 85 
 86 void dfs(int s,int f){
 87      for(int i=0;i<(int)qu[s].size();i++){
 88           int d=qu[s][i].second;
 89           int k=(tlca[d]==s)?-1:out[tlca[d]];
 90           if(~pt[d][0])pt[d][1]=k;
 91           else pt[d][0]=k;
 92      }
 93      for(int i=0;i<(int)gra[s].size();i++){
 94           int e=gra[s][i].first,g=gra[s][i].second;
 95           if(e==f){
 96                come[s]=g;continue;
 97           }
 98           out[s]=g;
 99           dfs(e,s);
100      }
101 }
102 
103 int main(){
104 //     freopen("/home/axorb/in","r",stdin);
105      while(~scanf("%d%d",&n,&m)){
106           eid=0;clr(head,-1);
107           for(int i=0;i<m;i++){
108                int a,b;scanf("%d%d",&a,&b);
109                addedge(a,b);addedge(b,a);
110           }
111           id=now=top=0;
112           for(int i=1;i<=n;i++)dfn[i]=0;
113           int cnt=0;
114           for(int i=1;i<=n;i++)
115                if(!dfn[i])tarjan(i,-1,++cnt);
116           for(int i=1;i<=id;i++){
117                gra[i].clear();qu[i].clear();
118           }
119           for(int i=1;i<=n;i++)
120                for(int j=head[i];~j;j=nxt[j]){
121                     int s=gid[i],e=gid[ed[j]];
122                     if(s!=e)gra[s].push_back(mpr(e,i));
123                }
124           clr(f,0);
125           scanf("%d",&q);
126           for(int i=0;i<q;i++){
127                int a,b,c;scanf("%d%d%d",&a,&b,&c);
128                //如果3个点不能到达,则答案肯定否定
129                if(block[a]!=block[b]){f[i]=1;continue;}
130                if(block[b]!=block[c]){f[i]=1;continue;}
131                if(block[a]!=block[c]){f[i]=1;continue;}
132                //如果起点和终点相同,那个路过的点也必须相同
133                if(a==b&&a!=c){f[i]=1;continue;}
134                int s=gid[a],e=gid[b],k=gid[c];
135                qu[s].push_back(mpr(e,i*3));
136                qu[e].push_back(mpr(s,i*3));
137                qu[s].push_back(mpr(k,i*3+1));
138                qu[k].push_back(mpr(s,i*3+1));
139                qu[e].push_back(mpr(k,i*3+2));
140                qu[k].push_back(mpr(e,i*3+2));
141                aa[i]=a;bb[i]=b;cc[i]=c;
142           }
143           for(int i=1;i<=id;i++)vis[i]=0;
144           for(int i=0;i<q*3;i++)
145                pt[i][0]=pt[i][1]=-1;
146           for(int i=1;i<=id;i++)
147                if(!vis[i]){
148                     lca(i,-1);
149                     dfs(i,-1);
150                }
151           for(int i=0;i<q;i++){
152                if(f[i]){
153                     puts("No");continue;
154                }
155                if(gid[aa[i]]==gid[bb[i]]){//如果A=B,那个C必须等于A
156                     if(gid[cc[i]]==gid[aa[i]])puts("Yes");
157                     else puts("No");
158                }
159                else if(gid[cc[i]]==tlca[i*3]){//如果C是lca(A,B)
160                     if(pt[i*3][1]==-1){
161                          //如果AB中有一个等于C,那么当那个点是出口且C不是出口的时候,C就不能到达
162                          int k=(gid[aa[i]]==gid[cc[i]])?aa[i]:bb[i];
163                          if(k==pt[i*3][0]&&cc[i]!=k) puts("No");
164                          else puts("Yes");
165                     }else{
166                          //如果AB都不是C,那个当AB进出C的是同一个点且不是C,C就不能到达
167                          if(pt[i*3][0]==pt[i*3][1]&&cc[i]!=pt[i*3][0]) puts("No");
168                          else puts("Yes");
169                     }
170                }else if(tlca[i*3+1]==gid[cc[i]]&&tlca[i*3+2]==tlca[i*3]){
171                     //如果C是A的祖先,且lca(A,B)=lca(C,B)
172                     //那么当父亲到C的点和C连出去到A的点是同一个点且不是C,那个C就不能到达
173                     int k=(pt[i*3+1][0]==-1)?aa[i]:pt[i*3+1][0];
174                     if(come[gid[cc[i]]]==k&&k!=cc[i])puts("No");
175                     else puts("Yes");
176                }else if(tlca[i*3+2]==gid[cc[i]]&&tlca[i*3+1]==tlca[i*3]){
177                     //同上
178                     int k=(pt[i*3+2][0]==-1)?bb[i]:pt[i*3+2][0];
179                     if(come[gid[cc[i]]]==k&&k!=cc[i])puts("No");
180                     else puts("Yes");
181                }else puts("No");
182           }
183      }
184 }
View Code

 

 

posted on 2013-08-18 10:16  Fatedayt  阅读(350)  评论(0编辑  收藏  举报

导航