SDU暑期集训排位(9)
G. Just Some Permutations
基础 DP 练习部分
- 定义 \(f(S)\),表示让 S 中的人全 happy 的方案数。
- \(dp[i][j]\) 表示,\(\sum_{|s|=j,s\subset\{1,...i\}} f(s)\)。
- 考虑从 \(dp[i][j]\) 开始的转移,可惜它转移不得,因为 \(i+1\) 个人,不知道自己能不能匹配成功。
- DP 状态记录 \(i+1,i\) 是否被匹配,大部分情况下 \(i+1\) 个人可以匹配 \(i,i+1,i+2\)
- Cornner Case 是 1 可以匹配 n,n 可以匹配 1,怎么办?
- DP 状态记录 \(1,n\) 是否被匹配。
- 于是 \(dp[i][j][\{i,i+1,1,n\} 匹配了哪些]\) 就是个很优雅的状态了,枚举第 \(i+1\) 个人匹配谁即可实现转移。
基础组合数学部分
- \(ans[i]\) 表示 \(\sum_{|s|=i} f(s)\)
- rdc 做完 基础 DP 练习后人解体了。
- \(g(x)\) 表示恰有 \(x\) 个 happy 的人的方案数。
- \(ans[i]=\sum_{j=x}^{n}g(j)\binom{j}{i}\)
基础的优化部分
- 比赛中 TLE 掉了。
- 需要每次都做 \(O(n*m*64)\) 的恐怖 DP?
- 考虑 \(n=200,m=200\),\(n=100,m=100\) 这个两组 Case 发现 \(dp[1][]\) 到 \(dp[98][]\) 值一样的。
- 不需要啊,对每组查询,更新 \(dp[i-1],dp[i]\) 即可。
D. Flood in Gridland
- 单纯形。rdc 比赛中调了一年,因为不知道默认有 \(x_i \geq 0\) 的条件,没文化。
- 调出来后 WA。
- sdcgvhgj 比赛后单纯形一发就过了。
posted @
2019-08-22 19:19
FST_stay_night
阅读(
209)
评论()
编辑
收藏
举报