上一页 1 ··· 4 5 6 7 8 9 下一页
摘要: Cheng, Jiangnan, Ao Tang, and Sandeep Chinchali. "Task-aware privacy preservation for multi-dimensional data." International Conference on Machine Lea 阅读全文
posted @ 2022-11-08 21:02 方班隐私保护小组 阅读(53) 评论(0) 推荐(0) 编辑
摘要: Alayrac J B, Recasens A, Schneider R, et al. Self-supervised multimodal versatile networks[J]. Advances in Neural Information Processing Systems, 2020 阅读全文
posted @ 2022-10-31 23:41 方班隐私保护小组 阅读(79) 评论(0) 推荐(0) 编辑
摘要: [1] Liu F, Wu X, Ge S, et al. Federated learning for vision-and-language grounding problems[C]//Proceedings of the AAAI Conference on Artificial Intel 阅读全文
posted @ 2022-10-12 21:15 方班隐私保护小组 阅读(57) 评论(0) 推荐(0) 编辑
摘要: Lingjuan Lyu, Jiangshan Yu, Karthik Nandakumar, Yitong Li, Xingjun Ma, Jiong Jin, Han Yu, and Kee Siong Ng. Towards Fair and Privacy-Preserving Federa 阅读全文
posted @ 2022-10-12 16:42 方班隐私保护小组 阅读(107) 评论(0) 推荐(0) 编辑
摘要: Nasr M, Shokri R, Houmansadr A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized an 阅读全文
posted @ 2020-12-04 22:27 方班隐私保护小组 阅读(544) 评论(0) 推荐(0) 编辑
摘要: M. Fang, X. Cao, J. Jia, & N. Gong, N. “Local model poisoning attacks to Byzantine-robust federated learning,” in 29th {USENIX} Security Symposium ({U 阅读全文
posted @ 2020-11-27 14:26 方班隐私保护小组 阅读(81) 评论(0) 推荐(0) 编辑
摘要: Ang Li , Yixiao Duan , Huanrui Yang , Yiran Chen , Jianlei Yang, “TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework for Deep Le 阅读全文
posted @ 2020-11-22 19:21 方班隐私保护小组 阅读(210) 评论(0) 推荐(0) 编辑
摘要: E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, & V. Shmatikov, “How to backdoor federated learning,” in International Conference on Artificial Intelligen 阅读全文
posted @ 2020-11-20 08:29 方班隐私保护小组 阅读(60) 评论(0) 推荐(0) 编辑
摘要: McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial Intelligence and Statistics. PMLR, 20 阅读全文
posted @ 2020-11-13 14:17 方班隐私保护小组 阅读(33) 评论(0) 推荐(0) 编辑
摘要: Chen, Yu, et al. "A training-integrity privacy-preserving federated learning scheme with trusted execution environment." Information Sciences 522 (202 阅读全文
posted @ 2020-11-13 14:12 方班隐私保护小组 阅读(29) 评论(0) 推荐(0) 编辑
上一页 1 ··· 4 5 6 7 8 9 下一页