摘要:
Cheng, Jiangnan, Ao Tang, and Sandeep Chinchali. "Task-aware privacy preservation for multi-dimensional data." International Conference on Machine Lea 阅读全文
摘要:
Alayrac J B, Recasens A, Schneider R, et al. Self-supervised multimodal versatile networks[J]. Advances in Neural Information Processing Systems, 2020 阅读全文
摘要:
[1] Liu F, Wu X, Ge S, et al. Federated learning for vision-and-language grounding problems[C]//Proceedings of the AAAI Conference on Artificial Intel 阅读全文
摘要:
Lingjuan Lyu, Jiangshan Yu, Karthik Nandakumar, Yitong Li, Xingjun Ma, Jiong Jin, Han Yu, and Kee Siong Ng. Towards Fair and Privacy-Preserving Federa 阅读全文
摘要:
Nasr M, Shokri R, Houmansadr A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized an 阅读全文
摘要:
M. Fang, X. Cao, J. Jia, & N. Gong, N. “Local model poisoning attacks to Byzantine-robust federated learning,” in 29th {USENIX} Security Symposium ({U 阅读全文
摘要:
Ang Li , Yixiao Duan , Huanrui Yang , Yiran Chen , Jianlei Yang, “TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework for Deep Le 阅读全文
摘要:
E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, & V. Shmatikov, “How to backdoor federated learning,” in International Conference on Artificial Intelligen 阅读全文
摘要:
McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial Intelligence and Statistics. PMLR, 20 阅读全文
摘要:
Chen, Yu, et al. "A training-integrity privacy-preserving federated learning scheme with trusted execution environment." Information Sciences 522 (202 阅读全文