02 2023 档案

摘要:Panda R, Chen C F R, Fan Q, et al. Adamml: Adaptive multi-modal learning for efficient video recognition[C]//Proceedings of the IEEE/CVF International 阅读全文
posted @ 2023-02-28 17:51 方班隐私保护小组 阅读(56) 评论(0) 推荐(0) 编辑
摘要:"Liu, Yiyong, et al. "Membership inference attacks by exploiting loss trajectory." Proceedings of the 2022 ACM SIGSAC Conference on Computer and Commu 阅读全文
posted @ 2023-02-24 21:12 方班隐私保护小组 阅读(211) 评论(2) 推荐(0) 编辑
摘要:Carion, Nicolas, et al. "End-to-end object detection with transformers." European conference on computer vision. Springer, Cham, 2020. 针对传统目标检测算法中存在的一 阅读全文
posted @ 2023-02-24 13:23 方班隐私保护小组 阅读(41) 评论(0) 推荐(0) 编辑
摘要:"Rezaei, Shahbaz, and Xin Liu. "On the difficulty of membership inference attacks." Proceedings of the IEEE/CVF Conference on Computer Vision and Patt 阅读全文
posted @ 2023-02-23 21:58 方班隐私保护小组 阅读(70) 评论(0) 推荐(0) 编辑
摘要:Song, F. , et al. "Efficient and Secure k-Nearest Neighbor Search Over Encrypted Data in Public Cloud." ICC 2019 - 2019 IEEE International Conference 阅读全文
posted @ 2023-02-23 10:01 方班隐私保护小组 阅读(40) 评论(0) 推荐(0) 编辑
摘要:Luo, et al. "Outlier-eliminated k-means clustering algorithm based on differential privacy preservation." Applied Intelligence the International Journ 阅读全文
posted @ 2023-02-22 22:15 方班隐私保护小组 阅读(55) 评论(0) 推荐(0) 编辑
摘要:"Nasr M, Songi S, Thakurta A, et al. Adversary instantiation: Lower bounds for differentially private machine learning[C]//2021 IEEE Symposium on secu 阅读全文
posted @ 2023-02-10 23:59 方班隐私保护小组 阅读(34) 评论(0) 推荐(0) 编辑
摘要:Mugunthan, V. , A. Peraire-Bueno , and L. Kagal . "PrivacyFL: A simulator for privacy-preserving and secure federated learning.", 10.1145/3340531.3412 阅读全文
posted @ 2023-02-10 23:36 方班隐私保护小组 阅读(49) 评论(0) 推荐(0) 编辑
摘要:Thapa, C. , M. Chamikara , and S. Camtepe . "SplitFed: When Federated Learning Meets Split Learning." (2020). 本文提出了一种联邦学习(FL)和分割学习(SL)的混合方法(SFL),能够同时解 阅读全文
posted @ 2023-02-10 23:35 方班隐私保护小组 阅读(260) 评论(0) 推荐(0) 编辑
摘要:"Jayaraman B, Evans D. Evaluating differentially private machine learning in practice[C]//USENIX Security Symposium. 2019." 本文对机器学习不同隐私机制进行评估。评估重点放在梯度 阅读全文
posted @ 2023-02-10 23:09 方班隐私保护小组 阅读(43) 评论(0) 推荐(0) 编辑
摘要:Rothchild, Daniel, et al. "Fetchsgd: Communication-efficient federated learning with sketching." International Conference on Machine Learning. PMLR, 2 阅读全文
posted @ 2023-02-10 12:52 方班隐私保护小组 阅读(258) 评论(0) 推荐(0) 编辑
摘要:"Salem A, Wen R, Backes M, et al. Dynamic backdoor attacks against machine learning models[C]//2022 IEEE 7th European Symposium on Security and Privac 阅读全文
posted @ 2023-02-03 16:54 方班隐私保护小组 阅读(106) 评论(0) 推荐(0) 编辑
摘要:Rindal, Peter , and P. Schoppmann . "VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE." 2021. 本文采用VOLE和PaXoS数据结构提出了一种批处理伪随机数函数OPRF的构造,并用其实现隐私交集PSI。 阅读全文
posted @ 2023-02-03 13:31 方班隐私保护小组 阅读(341) 评论(0) 推荐(0) 编辑
摘要:Li, X. , R. Dowsley , and MD Cock. "Privacy-Preserving Feature Selection with Secure Multiparty Computation.", 10.48550/arXiv.2102.03517. 2021. 当前PPML 阅读全文
posted @ 2023-02-03 13:30 方班隐私保护小组 阅读(27) 评论(0) 推荐(0) 编辑
摘要:Zhang, Michael, et al. "Personalized federated learning with first order model optimization." arXiv preprint arXiv:2012.08565 (2020). 本文是一篇2021年发表在ICR 阅读全文
posted @ 2023-02-03 13:09 方班隐私保护小组 阅读(108) 评论(0) 推荐(0) 编辑
摘要:"Song C, Shmatikov V. Auditing data provenance in text-generation models[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge 阅读全文
posted @ 2023-02-03 10:54 方班隐私保护小组 阅读(32) 评论(0) 推荐(0) 编辑

点击右上角即可分享
微信分享提示