01 2023 档案

摘要:Gong, Xuan, et al. "Preserving privacy in federated learning with ensemble cross-domain knowledge distillation." Proceedings of the AAAI Conference on 阅读全文
posted @ 2023-01-27 22:25 方班隐私保护小组 阅读(182) 评论(0) 推荐(0) 编辑
摘要:Wang, Xumeng, et al. "HetVis: A Visual Analysis Approach for Identifying Data Heterogeneity in Horizontal Federated Learning." IEEE Transactions on Vi 阅读全文
posted @ 2023-01-27 22:19 方班隐私保护小组 阅读(70) 评论(0) 推荐(0) 编辑
摘要:Kolesnikov, V. , et al. "Practical Multi-party Private Set Intersection from Symmetric-Key Techniques." Acm Sigsac Conference on Computer & Communicat 阅读全文
posted @ 2023-01-27 16:31 方班隐私保护小组 阅读(73) 评论(0) 推荐(0) 编辑
摘要:Qz, A , et al. "Blockchain-based privacy-preserving remote data integrity checking scheme for IoT information systems - ScienceDirect." Information Pr 阅读全文
posted @ 2023-01-27 16:30 方班隐私保护小组 阅读(16) 评论(0) 推荐(0) 编辑
摘要:Ofri Nevo, Ni Trieu and Avishay Yanai. "Simple, Fast Malicious Multiparty Private Set Intersection." In Proceedings of the 2021 ACM SIGSAC Conference 阅读全文
posted @ 2023-01-20 21:57 方班隐私保护小组 阅读(135) 评论(0) 推荐(0) 编辑
摘要:Jun Liu, Yuan Tian, Yu Zhou et al. "Privacy preserving distributed data mining based on secure multi-party computation." Computer Communications. Ed. 阅读全文
posted @ 2023-01-20 21:45 方班隐私保护小组 阅读(82) 评论(0) 推荐(0) 编辑
摘要:"Carlini, Nicholas, et al. "Membership inference attacks from first principles." 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022." 本文认为成员 阅读全文
posted @ 2023-01-20 17:07 方班隐私保护小组 阅读(210) 评论(0) 推荐(0) 编辑
摘要:"Jia, Jinyuan, and Neil Zhenqiang Gong. "AttriGuard: A practical defense against attribute inference attacks via adversarial machine learning." 27th U 阅读全文
posted @ 2023-01-20 16:25 方班隐私保护小组 阅读(67) 评论(0) 推荐(0) 编辑
摘要:"arXiv:2111.09679, 2021." 文章关注机器学习模型的隐私泄露问题,成员推理攻击:给出一条样本,可以推断该样本是否在模型的训练数据集中——即便对模型的参数、结构知之甚少,该攻击仍然有效。本质还是使用影子模型的方法训练攻击模型。但是针对攻击者不知道目标模型的训练集,文章提出了影子学 阅读全文
posted @ 2023-01-13 19:00 方班隐私保护小组 阅读(137) 评论(0) 推荐(0) 编辑
摘要:X. Lei, A. X. Liu, R. Li and G. -H. Tu, "SecEQP: A Secure and Efficient Scheme for SkNN Query Problem Over Encrypted Geodata on Cloud," 2019 IEEE 35th 阅读全文
posted @ 2023-01-13 18:55 方班隐私保护小组 阅读(33) 评论(0) 推荐(0) 编辑
摘要:Itahara, Sohei, et al. "Distillation-based semi-supervised federated learning for communication-efficient collaborative training with non-iid private 阅读全文
posted @ 2023-01-13 18:09 方班隐私保护小组 阅读(159) 评论(0) 推荐(0) 编辑
摘要:Li, Bowen, et al. "Fedipr: Ownership verification for federated deep neural network models." IEEE Transactions on Pattern Analysis and Machine Intelli 阅读全文
posted @ 2023-01-13 17:12 方班隐私保护小组 阅读(193) 评论(0) 推荐(0) 编辑
摘要:Liu, Yugeng, et al. "ML-Doctor: Holistic risk assessment of inference attacks against machine learning models." arXiv preprint arXiv:2102.02551 (2021) 阅读全文
posted @ 2023-01-13 16:39 方班隐私保护小组 阅读(59) 评论(0) 推荐(0) 编辑
摘要:Wang, Fengwei, et al. "A privacy-preserving and non-interactive federated learning scheme for regression training with gradient descent." Information 阅读全文
posted @ 2023-01-13 16:02 方班隐私保护小组 阅读(59) 评论(0) 推荐(0) 编辑
摘要:Peng, Xiaokang, et al. "Balanced Multimodal Learning via On-the-fly Gradient Modulation." Proceedings of the IEEE/CVF Conference on Computer Vision an 阅读全文
posted @ 2023-01-13 15:51 方班隐私保护小组 阅读(123) 评论(0) 推荐(0) 编辑
摘要:Devin Reich, Ariel Todoki, Rafael Dowsley, Martine De Cock, Anderson Nascimento. 2019. Privacy-Preserving Classification of Personal Text Messages wit 阅读全文
posted @ 2023-01-13 14:26 方班隐私保护小组 阅读(35) 评论(0) 推荐(0) 编辑
摘要:Jonas Böhler and Florian Kerschbaum. 2020. Secure Multi-party Computation of Differentially Private Median. In the Proceedings of the 29th USENIX Secu 阅读全文
posted @ 2023-01-13 14:14 方班隐私保护小组 阅读(85) 评论(0) 推荐(0) 编辑

点击右上角即可分享
微信分享提示