随笔分类 -  【五期李伟平】

摘要:Nagalapatti, Lokesh , and R. Narayanam . "Game of Gradients: Mitigating Irrelevant Clients in Federated Learning." (2021). 针对联邦学习中相关客户端选择(FRCS)的问题,本文提 阅读全文
posted @ 2024-01-13 14:16 方班隐私保护小组 阅读(55) 评论(0) 推荐(0) 编辑
摘要:Zafari, Faheem , et al. "A Game-Theoretic Approach to Multi-Objective Resource Sharing and Allocation in Mobile Edge Clouds." (2018). 为了缓解移动边缘计算中资源稀缺问 阅读全文
posted @ 2024-01-10 12:23 方班隐私保护小组 阅读(33) 评论(1) 推荐(1) 编辑
摘要:Peng Wu, Fengen Li, Jie Zhao, et al. Consensus Reaching Process With Multiobjective Optimization for Large-Scale Group Decision Making With Cooperativ 阅读全文
posted @ 2023-12-29 20:55 方班隐私保护小组 阅读(44) 评论(0) 推荐(0) 编辑
摘要:Zhang, Ning , Q. Ma , and X. Chen . "Enabling Long-Term Cooperation in Cross-Silo Federated Learning: A Repeated Game Perspective." (2022). 针对重复执行跨筒仓联 阅读全文
posted @ 2023-12-27 20:57 方班隐私保护小组 阅读(35) 评论(0) 推荐(0) 编辑
摘要:Nan W., et al. “The Value of Collaboration in Convex Machine Learning with Differential Privacy.” 2020 IEEE Symposium on Security and Privacy. 304-317 阅读全文
posted @ 2023-12-26 19:02 方班隐私保护小组 阅读(35) 评论(0) 推荐(0) 编辑
摘要:Xin, S. , et al. "Feature evaluation and selection with cooperative game theory." Pattern Recognition 45.8(2012):2992-3002. 基于合作博弈寻找最优特征子集,重点解决传统基于信息论 阅读全文
posted @ 2023-03-31 10:10 方班隐私保护小组 阅读(86) 评论(0) 推荐(0) 编辑
摘要:Bao, Xianglin , et al. "FLChain: A Blockchain for Auditable Federated Learning with Trust and Incentive." 2019 5th International Conference on Big Dat 阅读全文
posted @ 2023-03-02 16:06 方班隐私保护小组 阅读(65) 评论(0) 推荐(0) 编辑
摘要:Song, F. , et al. "Efficient and Secure k-Nearest Neighbor Search Over Encrypted Data in Public Cloud." ICC 2019 - 2019 IEEE International Conference 阅读全文
posted @ 2023-02-23 10:01 方班隐私保护小组 阅读(40) 评论(0) 推荐(0) 编辑
摘要:Luo, et al. "Outlier-eliminated k-means clustering algorithm based on differential privacy preservation." Applied Intelligence the International Journ 阅读全文
posted @ 2023-02-22 22:15 方班隐私保护小组 阅读(55) 评论(0) 推荐(0) 编辑
摘要:Mugunthan, V. , A. Peraire-Bueno , and L. Kagal . "PrivacyFL: A simulator for privacy-preserving and secure federated learning.", 10.1145/3340531.3412 阅读全文
posted @ 2023-02-10 23:36 方班隐私保护小组 阅读(49) 评论(0) 推荐(0) 编辑
摘要:Thapa, C. , M. Chamikara , and S. Camtepe . "SplitFed: When Federated Learning Meets Split Learning." (2020). 本文提出了一种联邦学习(FL)和分割学习(SL)的混合方法(SFL),能够同时解 阅读全文
posted @ 2023-02-10 23:35 方班隐私保护小组 阅读(260) 评论(0) 推荐(0) 编辑
摘要:Rindal, Peter , and P. Schoppmann . "VOLE-PSI: Fast OPRF and Circuit-PSI from Vector-OLE." 2021. 本文采用VOLE和PaXoS数据结构提出了一种批处理伪随机数函数OPRF的构造,并用其实现隐私交集PSI。 阅读全文
posted @ 2023-02-03 13:31 方班隐私保护小组 阅读(341) 评论(0) 推荐(0) 编辑
摘要:Li, X. , R. Dowsley , and MD Cock. "Privacy-Preserving Feature Selection with Secure Multiparty Computation.", 10.48550/arXiv.2102.03517. 2021. 当前PPML 阅读全文
posted @ 2023-02-03 13:30 方班隐私保护小组 阅读(27) 评论(0) 推荐(0) 编辑
摘要:Kolesnikov, V. , et al. "Practical Multi-party Private Set Intersection from Symmetric-Key Techniques." Acm Sigsac Conference on Computer & Communicat 阅读全文
posted @ 2023-01-27 16:31 方班隐私保护小组 阅读(73) 评论(0) 推荐(0) 编辑
摘要:Qz, A , et al. "Blockchain-based privacy-preserving remote data integrity checking scheme for IoT information systems - ScienceDirect." Information Pr 阅读全文
posted @ 2023-01-27 16:30 方班隐私保护小组 阅读(16) 评论(0) 推荐(0) 编辑
摘要:Ofri Nevo, Ni Trieu and Avishay Yanai. "Simple, Fast Malicious Multiparty Private Set Intersection." In Proceedings of the 2021 ACM SIGSAC Conference 阅读全文
posted @ 2023-01-20 21:57 方班隐私保护小组 阅读(135) 评论(0) 推荐(0) 编辑
摘要:Jun Liu, Yuan Tian, Yu Zhou et al. "Privacy preserving distributed data mining based on secure multi-party computation." Computer Communications. Ed. 阅读全文
posted @ 2023-01-20 21:45 方班隐私保护小组 阅读(82) 评论(0) 推荐(0) 编辑
摘要:Devin Reich, Ariel Todoki, Rafael Dowsley, Martine De Cock, Anderson Nascimento. 2019. Privacy-Preserving Classification of Personal Text Messages wit 阅读全文
posted @ 2023-01-13 14:26 方班隐私保护小组 阅读(35) 评论(0) 推荐(0) 编辑
摘要:Jonas Böhler and Florian Kerschbaum. 2020. Secure Multi-party Computation of Differentially Private Median. In the Proceedings of the 29th USENIX Secu 阅读全文
posted @ 2023-01-13 14:14 方班隐私保护小组 阅读(85) 评论(0) 推荐(0) 编辑
摘要:Jonas Böhler and Florian Kerschbaum. 2021. Secure Multi-party Computation of Differentially Private Heavy Hitters. In Proceedings ofthe 2021 ACM SIGSA 阅读全文
posted @ 2022-12-16 17:06 方班隐私保护小组 阅读(111) 评论(0) 推荐(0) 编辑

点击右上角即可分享
微信分享提示