随笔分类 -  联邦学习隐私

摘要:Li, Li, et al. "A review of applications in federated learning." Computers & Industrial Engineering 149 (2020): 106854.CCF-A(AAAI'20) 本论文提出了一种联邦学习框架,可 阅读全文
posted @ 2022-11-25 22:26 方班隐私保护小组 阅读(63) 评论(0) 推荐(0) 编辑
摘要:Jiayi Chen and Aidong Zhang. 2022. FedMSplit: Correlation-Adaptive Federated Multi-Task Learning across Multimodal Split Networks. In Proceedings of t 阅读全文
posted @ 2022-11-10 22:51 方班隐私保护小组 阅读(216) 评论(0) 推荐(0) 编辑
摘要:Lingjuan Lyu, Jiangshan Yu, Karthik Nandakumar, Yitong Li, Xingjun Ma, Jiong Jin, Han Yu, and Kee Siong Ng. Towards Fair and Privacy-Preserving Federa 阅读全文
posted @ 2022-10-12 16:42 方班隐私保护小组 阅读(119) 评论(0) 推荐(0) 编辑
摘要:M. Fang, X. Cao, J. Jia, & N. Gong, N. “Local model poisoning attacks to Byzantine-robust federated learning,” in 29th {USENIX} Security Symposium ({U 阅读全文
posted @ 2020-11-27 14:26 方班隐私保护小组 阅读(87) 评论(0) 推荐(0) 编辑
摘要:E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, & V. Shmatikov, “How to backdoor federated learning,” in International Conference on Artificial Intelligen 阅读全文
posted @ 2020-11-20 08:29 方班隐私保护小组 阅读(71) 评论(0) 推荐(0) 编辑
摘要:McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial Intelligence and Statistics. PMLR, 20 阅读全文
posted @ 2020-11-13 14:17 方班隐私保护小组 阅读(39) 评论(0) 推荐(0) 编辑
摘要:Chen, Yu, et al. "A training-integrity privacy-preserving federated learning scheme with trusted execution environment." Information Sciences 522 (202 阅读全文
posted @ 2020-11-13 14:12 方班隐私保护小组 阅读(37) 评论(0) 推荐(0) 编辑
摘要:Wang, Zhibo, et al. "Beyond inferring class representatives: User-level privacy leakage from federated learning." IEEE INFOCOM 2019-IEEE Conference on 阅读全文
posted @ 2020-11-01 21:17 方班隐私保护小组 阅读(69) 评论(0) 推荐(0) 编辑
摘要:Kang Wei, ,Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farhad Farokhi, Shi Jin, Tony Q. S. Quek and H. Vincent Poor, “Federated Learning with Differe 阅读全文
posted @ 2020-11-01 20:41 方班隐私保护小组 阅读(294) 评论(0) 推荐(0) 编辑

点击右上角即可分享
微信分享提示