Jzoj2270 【SDOI2011】计算器

1、给定 y、z、p,计算y^z mod p的值;
  2、给定 y、z、p,计算满足xy≡z(mod p)的最小非负整数 ;
  3、给定y、z、p,计算满足y^x≡z(mod p)的最小非负整数 。

第一问不说,第二问请看 同余方程 主要说第三问

第三问是经典的离散对数(其实我并不会而且也基本不考

我们使用经典的giant-step-baby-step算法,令s=sqrt(m),那么x=ks+r,我们将所有y^r放进map中

让后枚举k,对于一个k,我们查找z*inv(y^ks)是否在map中有解,如果有那么直接返回r+ks

#include<stdio.h>
#include<math.h>
#include<map>
using namespace std;
#define L long long
L x,y,z,M; int n,t;
L pow(L x,L k){
	L S=1;
	for(;k;x=x*x%M,k>>=1)
		if(k&1) S=S*x%M;
	return S;
}
L extgcd(L a,L b,L& x,L& y){
	if(b){
		L r=extgcd(b,a%b,y,x);
		y-=x*(a/b); return r;
	} else { x=1,y=0; return a; }
}
L sol(L a,L b){
	L x,y,r=extgcd(a,M,x,y);
	if(b%r) return -1;
	else {
		x*=b/r; x=(M-x)%M; x=(M-x)%M;
		return (x+M)%(M/r);
	}
}
L dislog(int x,int n){
	if(x==0) return -1;
	if(n%M==1) return 0;
	map<L,int> rec; 
	L c=1,mul;
	int sq=sqrt(M);
	for(;1ll*sq*sq<=M;++sq);
	for(int i=0;i<sq;++i){
		rec[c]=i;
		c=c*x%M;
	}
	mul=c; c=1;
	for(int i=0;i<sq;++i){
		L m=1ll*n*pow(c,M-2)%M;
		if(rec[m]) return (M+i*sq+rec[m])%M;
		c=c*mul%M;
	}
	return -1;
}
int main(){
	scanf("%d%d",&n,&t);
	for(int i=0;i<n;++i){
		scanf("%lld%lld%lld",&y,&z,&M); 
		if(t==1) printf("%lld\n",pow(y,z));
		if(t==2) {
			L ans=sol(y,z);
			if(~ans) printf("%lld\n",ans);
			else puts("Orz, I cannot find x!");
		}
		if(t==3) {
			z%=M;y%=M;
			L ans=dislog(y,z);
			if(~ans) printf("%lld\n",ans);
			else puts("Orz, I cannot find x!");
		}
	}
}


posted @   扩展的灰(Extended_Ash)  阅读(178)  评论(0编辑  收藏  举报
编辑推荐:
· 智能桌面机器人:用.NET IoT库控制舵机并多方法播放表情
· Linux glibc自带哈希表的用例及性能测试
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
阅读排行:
· 手把手教你在本地部署DeepSeek R1,搭建web-ui ,建议收藏!
· 新年开篇:在本地部署DeepSeek大模型实现联网增强的AI应用
· Janus Pro:DeepSeek 开源革新,多模态 AI 的未来
· 互联网不景气了那就玩玩嵌入式吧,用纯.NET开发并制作一个智能桌面机器人(三):用.NET IoT库
· 【非技术】说说2024年我都干了些啥
点击右上角即可分享
微信分享提示