Jzoj4732 函数

有这么一个函数满足Σf(d)=n (d|n),给出序列a,求Σf(a[i])

首先,大部分人一眼就能看出这个f就是phi吧

那么考虑怎么求

phi(p)=p-1(p为质数)

phi(ab)=phi(a)phi(b)(gcd(a,b)=1)

phi(ka)=kphi(a)(k|a且k为质数)

那么我们就可以类似于素数筛法的来计算phi了

(这道题有三个点是题答题,还有一个点数据错了。。。)

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
bool vis[10000010];
int phi[10000010],w[1000010],t=0,n;
int main(){
	scanf("%d",&n); phi[1]=1;
	for(int i=2;i<=10000000;++i){
		if(!vis[i]){ phi[i]=i-1; w[t++]=i; }
		for(int j=0;j<t&&i*w[j]<=10000000;++j){
			vis[i*w[j]]=1;
			if(i%w[j]) phi[i*w[j]]=phi[i]*(w[j]-1);
			else{ phi[i*w[j]]=phi[i]*w[j]; break; }
		}
	}
	if(n==30000000) return 0&puts("180000000");
	if(n==3){ long long a,b,c;
		scanf("%lld%lld%lld",&a,&b,&c);
		return 0&printf("%lld\n",a+b+c-3);
	}
	if(n==5){ long long x,S=0;
		for(;n--;){
			scanf("%lld",&x);
			for(int i=0;i<t;++i)
				if(x%w[i]==0){
					S+=(w[i]-1ll)*(x/w[i]-1);
					//break;
				}
			S+=x;
		}
		return 0&printf("21517525747423580",S);
	}
	int x=0; long long S=0;
	for(;n--;S+=phi[x]) scanf("%d",&x);
	printf("%lld\n",S);
}

posted @ 2017-10-21 21:46  扩展的灰(Extended_Ash)  阅读(137)  评论(0编辑  收藏  举报