Jzoj5542 董先生的钦点


这道题在我做的前一天被wjw大佬压中了,当时随便脑洞了一个做法

于是在比赛还剩3分钟的时候我把它写了一下就切了

考虑一个集合S,f(S)=ΣSi 显然我们将所有的f排序之后有一个性质rank[f(S)]+rank[f(~S)]=2^N

那么显然,中位数就是将全集划分为两个尽可能平均的集合的较大一部分

我们考虑dp,f[i]=max(f[i-v[j]]+v[j]) ,答案即为f[S/2]

这样显然会超时,我们要用bitset来优化,方程为f[i]=f[i]|f[i<<v[j]],复杂度O(n^3/128)

 

#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<bitset> 
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n,v[2010],S,T;
bitset<2000*1000> f;
int main(){
	freopen("will.in","r",stdin);
	freopen("will.out","w",stdout);
	scanf("%d",&n);
	for(int i=1;i<=n;++i) scanf("%d",v+i),S+=v[i];
	T=S; S>>=1; f[0]=1;
	for(int i=1;i<=n;++i) f|=f<<v[i];
	while(!f[S]) S--;
	printf("%d\n",T-S);
}


posted @ 2018-01-24 17:27  扩展的灰(Extended_Ash)  阅读(181)  评论(1编辑  收藏  举报