[bzoj 3192] [JLOI2013]删除物品

[bzoj 3192] [JLOI2013]删除物品

Description

箱子再分配问题需要解决如下问题:
(1) 一共有N个物品,堆成M堆。
(2)所有物品都是一样的,但是它们有不同的优先级。
(3)你只能够移动某堆中位于顶端的物品。
(4)你可以把任意一堆中位于顶端的物品移动到其它某堆的顶端。若此物品是当前所有物品中优先级最高的,可以直接将之删除而不用移动。
(5)求出将所有物品删除所需的最小步数。删除操作不计入步数之中。
(6)只是一个比较难解决的问题,这里你只需要解决一个比较简单的版本:
不会有两个物品有着相同的优先级,且M=2

Input

第一行是包含两个整数N1,N2分别表示两堆物品的个数。
接下来有N1行整数按照从顶到底的顺序分别给出了第一堆物品中的优先级,数字越大,优先级越高。
再接下来的N2行按照同样的格式给出了第二堆物品的优先级。

Output

对于每个数据,请输出一个整数,即最小移动步数。

HINT

1<=N1+N2<=100000

实际上我们就是要每次找到一个最大的物品,然后计算删除物品的代价.为了方便,我们可以把两个物品堆堆顶与堆顶对在一起,中间留一个位置放当前初始位置,那么题目就变成了计算这个位值在数列中移动的代价.那么我们就可以用树状数组维护了.(为什么?因为只要单点修改区间查询)我们在树状数组中插入移动的代价(移动一次代价为1),所以树状数组初值赋值为1.删除一次物品,就把那个位置变成0就好了.

代码如下

#include <cstdio>
#include <algorithm>
using namespace std;

typedef long long LL;

static const int maxm=2e6+10;

struct node{
	int v,id;
	bool operator < (const node &n) const {
		return v>n.v;
	}
}A[maxm];

int tr[maxm];
int N,N1,N2,pos;
LL ans;

int lowbit(int x){
	return x&-x;
}

void add(int val,int k){
	for(int i=k;i<=N;i+=lowbit(i))tr[i]+=val;
}

int Query(int k){
	int ret=0;
	for(int i=k;i;i-=lowbit(i))ret+=tr[i];
	return ret;
}

int solve(int l,int r){
	if(l>r)swap(l,r);
	return Query(r)-Query(l-1);
}

int main(){
	scanf("%d%d",&N1,&N2);N=N1+N2+1;pos=N1+1;
	for(int i=N1;i>=1;i--)scanf("%d",&A[i].v);
	for(int i=N1+2;i<=N;i++)scanf("%d",&A[i].v);
	
	for(int i=1;i<=N;i++){
		if(i!=pos)add(1,i);
		A[i].id=i;
	}
	
	sort(A+1,A+N+1);
	
	for(int i=1;i<N;i++){
		ans+=solve(A[i].id,pos)-1;
		pos=A[i].id;add(-1,pos);
	}
	
	printf("%lld\n",ans);

	return 0;	
}

传送门

posted @ 2017-05-06 19:34  Exbilar  阅读(186)  评论(0编辑  收藏  举报