大数据-hive 添加分区
1、静态分区
1> 添加一个
alter table t2 add partition (city=‘shanghai’);
2> 添加多个
alter table t2 add partition (city=‘chengdu’) partition(city=‘tianjin’);
3> 添加分区指定位置
alter table log_mess add partition (year =2013,month=2,day=2) location ‘/user/2013/02/02’; --新的分区不在 log_mess的子目录中
4> 修改表,分区路径重新指定
alter table log_mess partition(year =2012,month=1,day=2) set location ‘/user/2012/01/02’;
这个命令不会将数据从旧的路径转移走,也不会删除旧的数据
2、动态分区
3、分区注意细节
尽量不要使用动态分区,因为动态分区将会为每一个分区分配reducer数量,当分区数量多的时候,reducer数量
将会增加,对服务器是一种灾难
动态分区和静态分区的区别,静态分区不管有没有数据都将会创建该分区,动态分区是有结果集将创建,否则不创建
hive动态分区的严格模式和hive提供的hive.mapred.mode的严格模式。
hive提供我们一个严格模式:为了阻止用户不小心提交恶意hql
hive.mapred.mode=nostrict : strict
如果该模式值为strict,将会阻止以下三种查询:
(1)、对分区表查询,where中过滤字段不是分区字段。
(2)、笛卡尔积join查询,join查询语句,不带on条件 或者 where条件。
(3)、对order by查询,有order by的查询不带limit语句
————————————————
版权声明:本文为CSDN博主「大富的大数据之路」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/yaoyelinger0912/article/details/95781169
文末查看关键字,回复赠书
一、理论基础
1.Hive分区背景
在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作。有时候只需要扫描表中关心的一部分数据,因此建表时引入了partition概念。
2.Hive分区实质
因为Hive实际是存储在HDFS上的抽象,Hive的一个分区名对应hdfs的一个目录名,并不是一个实际字段。
3.Hive分区的意义
辅助查询,缩小查询范围,加快数据的检索速度和对数据按照一定的规格和条件进行查询,更方便数据管理。
4.常见的分区技术
hive表中的数据一般按照时间、地域、类别等维度进行分区。
二、单分区操作
1.创建分区表
create table if not exists t1(
id int
,name string
,hobby array
,add map
)
partitioned by (pt_d string)
row format delimited
fields terminated by ','
collection items terminated by '-'
map keys terminated by ':'
;
注:这里分区字段不能和表中的字段重复。 如果分区字段和表中字段相同的话,会报错,如下:
create table t10(
id int
,name string
,hobby array<string>
,add maptring,string>
)
partitioned by (id int)
row format delimited
fields terminated by ','
collection items terminated by '-'
map keys terminated by ':'
;
报错信息:FAILED: SemanticException [Error 10035]: Column repeated in partitioning columns

报错信息
2.装载数据
需要加载的文件内容如下:
1,xiaoming,book-TV-code,beijing:chaoyang-shagnhai:pudong
2,lilei,book-code,nanjing:jiangning-taiwan:taibei
3,lihua,music-book,heilongjiang:haerbin
执行load data
load data local inpath '/home/hadoop/Desktop/data' overwrite into table t1 partition ( pt_d = '201701');
3.查看数据及分区
查看分区数据,使用和字段使用一致。
select * from t1 where pt_d = '201701';
结果
1 xiaoming ["book","TV","code"] {"beijing":"chaoyang","shagnhai":"pudong"} 201701
2 lilei ["book","code"] {"nanjing":"jiangning","taiwan":"taibei"} 201701
3 lihua ["music","book"] {"heilongjiang":"haerbin"} 201701
查看分区
show partitions t1;
4.插入另一个分区
再创建一份数据并装载,分区=‘000000’
load data local inpath '/home/hadoop/Desktop/data' overwrite into table t1 partition ( pt_d = '000000');
查看数据:
select * from t1;
1 xiaoming ["book","TV","code"] {"beijing":"chaoyang","shagnhai":"pudong"} 000000
2 lilei ["book","code"] {"nanjing":"jiangning","taiwan":"taibei"} 000000
3 lihua ["music","book"] {"heilongjiang":"haerbin"} 000000
1 xiaoming ["book","TV","code"] {"beijing":"chaoyang","shagnhai":"pudong"} 201701
2 lilei ["book","code"] {"nanjing":"jiangning","taiwan":"taibei"} 201701
3 lihua ["music","book"] {"heilongjiang":"haerbin"} 201701
5.观察HDFS上的文件
去hdfs上看文件
http://namenode:50070/explorer.html#/user/hive/warehouse/test.db/t1
可以看到,文件是根据分区分别存储,增加一个分区就是一个文件。
查询相应分区的数据
select * from t1 where pt_d = ‘000000’
添加分区,增加一个分区文件
alter table t1 add partition (pt_d = ‘333333’);
删除分区(删除相应分区文件)
注意,对于外表进行drop partition并不会删除hdfs上的文件,并且通过msck repair table table_name可以同步回hdfs上的分区。
alter table test1 drop partition (pt_d = ‘20170101’);
三、多个分区操作
1.创建分区表
create table t10(
id int
,name string
,hobby array<string>
,add maptring,string>
)
partitioned by (pt_d string,sex string)
row format delimited
fields terminated by ','
collection items terminated by '-'
map keys terminated by ':'
;
2.加载数据(分区字段必须都要加)
load data local inpath ‘/home/hadoop/Desktop/data’ overwrite into table t10 partition ( pt_d = ‘0’);
如果只是添加一个,会报错:FAILED: SemanticException [Error 10006]: Line 1:88 Partition not found ”0”
load data local inpath '/home/hadoop/Desktop/data' overwrite into table t10 partition ( pt_d = '0',sex='male');
load data local inpath '/home/hadoop/Desktop/data' overwrite into table t10 partition ( pt_d = '0',sex='female');
观察HDFS上的文件,可发现多个分区具有顺序性,可以理解为windows的树状文件夹结构。
四、表分区的增删修查 1.增加分区 这里我们创建一个分区外部表
create external table testljb (
id int
) partitioned by (age int);
添加分区
官网说明:
ALTER TABLE table_name ADD [IF NOT EXISTS] PARTITION partition_spec [LOCATION 'location'][, PARTITION partition_spec [LOCATION 'location'], ...];
partition_spec:
: (partition_column = partition_col_value, partition_column = partition_col_value, ...)
实例说明
- • 一次增加一个分区
alter
table testljb add
partition
(age=2);
- • 一次增加多个同级(分区名相同)分区
alter
table testljb add
partition(age=3)
partition(age=4);
- • 注意:一定不能写成如下方式:
alter
table testljb add
partition(age=5,age=6);
如果我们show partitions table_name 会发现仅仅添加了age=6的分区。
这里猜测原因:因为这种写法实际上:具有多个分区字段表的分区添加,而我们写两次同一个字段,而系统中并没有两个age分区字段,那么就会随机添加其中一个分区。
父子级分区增加:
举个例子,有个表具有两个分区字段:age分区和sex分区。那么我们添加一个age分区为1,sex分区为male的数据,可以这样添加:
alter table testljb add partition(age=1,sex='male');
2.删除分区
删除分区age=1
alter table testljb drop partition(age=1);
注:加入表testljb有两个分区字段(上文已经提到多个分区先后顺序类似于windows的文件夹的树状结构),partitioned by(age int ,sex string),那么我们删除age分区(第一个分区)时,会把该分区及其下面包含的所有sex分区一起删掉。
3.修复分区
修复分区就是重新同步hdfs上的分区信息。
msck repair table table_name;
4.查询分区
show partitions table_name;
上一篇:数据仓库与数据集市建模
下期预告:hive的动态分区与静态分区
按例,我的个人公众号:鲁边社,欢迎关注
后台回复关键字 [hive],随机赠送一本鲁边备注版珍藏大数据书籍。
posted on 2023-08-10 21:11 ExplorerMan 阅读(2204) 评论(0) 编辑 收藏 举报
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
2020-08-10 Gitlab - Ubuntu18注册gitlab-runner并激活CI/CD
2020-08-10 超详细Gitlab Runner环境配置中文教程
2020-08-10 gitlab + gitlab-runner 集成 CICD
2016-08-10 WPF 竖排文字(转)