如何在Spark集群的work节点上启动多个Executor?
如何在Spark集群的work节点上启动多个Executor?
默认情况下,Spark集群下的worker,只会启动一个Executor,只运行了一个 CoarseGrainedExecutorBackend 进程。Worker 通过持有 ExecutorRunner 对象来控制 CoarseGrainedExecutorBackend 的启停。
那么如何启动多个executor呢?通过设置参数来解决:
1、设置每个executor使用的cpu数为4
spark.executor.cores 4
2、限制cpu使用数量,这里会启动3个executor(12/4)
spark.cores.max 12
3、设置每个executor的内存大小为8g
spark.executor.memory 12g
以上设置将会启动3个executor,每个executor使用4cpu,12gRAM。
总共占用worker资源12cpu,36gRAM。
Spark1.6的源码部分为:
protected final String EXECUTOR_MEMORY = "--executor-memory";
protected final String TOTAL_EXECUTOR_CORES = "--total-executor-cores";
protected final String EXECUTOR_CORES = "--executor-cores";
也可以在提交任务的时候添加:
SparkSubmit --class com.dyq.spark.MyClass --master:spark://master:7077 --total-executor-cores 12 --executor-cores 24 --executor-memory 12g
posted on 2021-02-01 18:41 ExplorerMan 阅读(921) 评论(0) 编辑 收藏 举报