bzoj4025 二分图

题目链接:bzoj4025

题目大意:

神犇有一个n个节点的图。因为神犇是神犇,所以在T时间内一些边会出现后消失。神犇要求出每一时间段内这个图是否是二分图。这么简单的问题神犇当然会做了,于是他想考考你。


题解:

cdq+并查集判奇环

二分图,不存在奇环的图就叫二分图。所以用带权并查集来判断奇环。为了(?),按秩合并且不用路径压缩(方便还原并查集)。按秩合并的话就是有个rank[i]值表示该集的高度,每次合并就把rank小的合到大的那里,使复杂度最小。

那么判断的时候对于一边上的两点,若不在一个并查集那么肯定不会构成环,若在的话,就getdistance判断是否是奇环。

分治过程:
1、处理完全符合分治区间时间段的所有边合并并判埋是否有奇环。若有的话,该时间段的都不是二分图了,就可以退了...
2、其余不完全符合区间的都在左边就弄到左边,都在右边就弄到右边。若跨区间,则把左半部分弄到左边,右半部分到右边
3、若分治到底,就说明这个时间段是二分图
4、没有到底就分治左边,分治右边啊
5、把并查集恢复至初始的样子

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<vector>
#include<iostream>
#include<algorithm>
using namespace std;
#define maxn 201000

struct node {int x,y,s,t;};
vector<node> S;
int tp,sta1[maxn];bool sta2[maxn];
int rk[maxn],fa[maxn],d[maxn],ans[maxn];
int ffind(int x)
{
	while (x!=fa[x]) x=fa[x];
	return x;
}
void merge(int fx,int fy,int c)
{
	if (rk[fx]>rk[fy]) 
	{
		sta1[++tp]=fy;sta2[tp]=1;
		fa[fy]=fx,d[fy]=c;
	}
	else if (rk[fx]<rk[fy]) 
	{
		sta1[++tp]=fx;sta2[tp]=1;
		fa[fx]=fy,d[fx]=c;
	}
	else
	{
		rk[fx]++;
		sta1[++tp]=fy;sta2[tp]=0;
		fa[fy]=fx;
		d[fy]=c;
	}
}
int getd(int x)
{
	int ans=0;
	while (x!=fa[x]) ans^=d[x],x=fa[x];
	return ans;
}
void solve(int l,int r,vector<node> M)//int ll,int rr
{
	int i,mid=(l+r)>>1,now=tp;
	vector<node> ll,rr;
	for (i=0;i<M.size();i++)
	{
		node a=M[i];
		if (a.s==l && a.t==r)
		{
			 int x=a.x,y=a.y;
			 int fx=ffind(x),fy=ffind(y);
			 int c=getd(x)^getd(y)^1;
			 if (fx!=fy) merge(fx,fy,c);
			 else if (c&1)
			 {
				 for (int j=l;j<=r;j++) ans[j]=0;
				 while (now!=tp) 
				 {
					 if (!sta2[tp]) rk[sta1[tp]]--;
					 fa[sta1[tp]]=sta1[tp];d[sta1[tp]]=0;tp--;
				 }
				 return;
			 }
		}
		else if (a.t<=mid) ll.push_back(a);
		else if (a.s>mid) rr.push_back(a);
		else
		{
			node b=a;b.t=mid;
			ll.push_back(b);
			b=a;b.s=mid+1;
			rr.push_back(b);
		}
	}
	if (l==r) ans[l]=1;
	else solve(l,mid,ll),solve(mid+1,r,rr);
	while (now!=tp) 
	{
		if (!sta2[tp]) rk[sta1[tp]]--;
		fa[sta1[tp]]=sta1[tp];d[sta1[tp]]=0;tp--;
	}
}
int main()
{
	freopen("a.in","r",stdin);
	freopen("a.out","w",stdout);
	int n,m,T,i;tp=0;
	scanf("%d%d%d",&n,&m,&T);//T段时间
	for (i=1;i<=n;i++) d[i]=0,fa[i]=i;
	for (i=1;i<=m;i++)
	{
		node t;
		scanf("%d%d%d%d",&t.x,&t.y,&t.s,&t.t);
		t.s++;if (t.s<=t.t) S.push_back(t);
		//s时刻出现t时刻消失即于第s+1时段~第t时段存在
	}	
	for (i=1;i<=T;i++) ans[i]=1;
	solve(1,T,S);
	for (i=1;i<=T;i++) if (ans[i]) printf("Yes\n");else printf("No\n");
	return 0;
}


posted @ 2017-02-15 14:05  OxQ  阅读(178)  评论(0编辑  收藏  举报