2017年11月8日

第13篇

摘要: \section{On a Class of Elementary Symmetric Functions}%13\markboth{Articles}{On a Class of Elementary Symmetric Functions} \vspace{4.2cm} \subsection{ 阅读全文

posted @ 2017-11-08 00:53 Eufisky 阅读(197) 评论(0) 推荐(0)

第5篇

摘要: \section{Multivariate Generating Functions and other Tidbits}%5\markboth{Articles}{Multivariate Generating Functions and other Tidbits} \vspace{4.2cm} 阅读全文

posted @ 2017-11-08 00:51 Eufisky 阅读(282) 评论(0) 推荐(0)

2017年11月7日

计算机视觉、模式识别、机器学习牛人主页

摘要: 牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at Microsoft Research New England Vittorio Ferrari a 阅读全文

posted @ 2017-11-07 14:23 Eufisky 阅读(1062) 评论(0) 推荐(0)

贝塞尔问题

摘要: 巴塞尔问题是一个著名的数论问题,这个问题首先由皮耶特罗·门戈利在1644年提出,由莱昂哈德·欧拉在1735年解决。由于这个问题难倒了以前许多的数学家,欧拉一解出这个问题马上就出名了,当时他二十八岁。欧拉把这个问题作了一番推广,他的想法后来被黎曼在1859年的论文《论小于给定大数的质数个数》(On t 阅读全文

posted @ 2017-11-07 14:12 Eufisky 阅读(4246) 评论(0) 推荐(0)

初识压缩感知Compressive Sensing

摘要: 压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目。最近粗浅地看了这方面一些研究,对于Compressive Sensing有了初步理解,在此分享一些资料与精华。本文针对陶哲轩和Emmanuel Candes上次到北京的讲座中对压缩感知的讲解进行讲解,让大家能够对这个新兴领域有一个初步概 阅读全文

posted @ 2017-11-07 14:10 Eufisky 阅读(6992) 评论(1) 推荐(0)

2017年11月3日

关于深度学习的优化方法

摘要: 关于深度学习的优化方法(On Optimization Methods for Deep Learning) 摘要 在训练深度学习时我们的主要方法是随机梯度下降法(stochastic gradient descent methods , SGDs)。尽管它易于实现,但SGDs调整困难,并且很难并行 阅读全文

posted @ 2017-11-03 22:27 Eufisky 阅读(3879) 评论(0) 推荐(0)

2017年11月2日

翻译事宜

摘要: 记得17岁那年 第一次和她接吻 快亲上的时候 她突然说等一下 我就纳闷了 她要干嘛?只见她小心翼翼地从兜里拿出三个糖 就上好佳那种圆的 草莓苹果和荔枝味的 她让我挑一个喜欢的 我指了一下那个荔枝的 然后问她干嘛? 她二话不说马上撕开糖纸 就把那颗糖给吃了 然后一把扯过我的脖子 我俩就接吻了 全程一股 阅读全文

posted @ 2017-11-02 14:05 Eufisky 阅读(392) 评论(0) 推荐(0)

2017年10月29日

处处连续而无处可微函数

摘要: 1、处处连续而无处可微函数集锦 2、用无穷乘积构造的一个无处可微的连续函数 3、$\tan x=x$的第$n$个正根. 4、巴塞尔问题 5、深度学习 6、q-Polygamma Function 7、Jacobi Theta Functions 8、Linear Matrix Inequalitie 阅读全文

posted @ 2017-10-29 21:50 Eufisky 阅读(791) 评论(0) 推荐(0)

美国数学月刊征解题

摘要: (2017年10月AMM征解题)求证\[\prod\limits_{j \ge 1} {{e^{ - 1/j}}\left( {1 + \frac{1}{j} + \frac{1}{{2{j^2}}}} \right)} = \frac{{{e^{\pi /2}} + {e^{ - \pi /2}} 阅读全文

posted @ 2017-10-29 20:44 Eufisky 阅读(989) 评论(0) 推荐(0)

2017年10月24日

拉马努金问题解答

摘要: 证明\begin{align*}\int_0^{ + \infty } {\frac{{\sin nx}}{{x + \frac{1}{{x + \frac{2}{{x + \frac{3}{{x + \cdots }}}}}}}}dx} &= \frac{{\sqrt {\frac{\pi }{2 阅读全文

posted @ 2017-10-24 22:53 Eufisky 阅读(540) 评论(0) 推荐(0)

导航