Pi和e的积分

第一个积分的解答:
第二个积分的另一种求法:
来自:http://math.stackexchange.com/questions/324647/integrate-int-01x-x1-xx-1-sin-pi-xdx
http://math.stackexchange.com/questions/958624/prove-that-int-01-sin-pi-xxx1-x1-x-dx-frac-pi-e24
[Torsten Carleman][1] proved in 1922 that
>
where , , and . Thenceforth, this result is known as [Carleman's inequality][2]. There exists a number of refined versions of Carleman's original work . It has turned out that the following generalization is – from our point of view – important, which is proved by Yang :
with .
On the last page of his paper, Yang conjectured that if
then , In fact, the constants and are not corrent in Yang's work, the correct values are and . Later, this conjecture was proved and discussed by Yang , Gylletberg and Ping , and Yue . They are using the recurrence
The recurrence is given in a somewhat more compact form in Finch's manuscript , as the following:
>
The first ten values of the sequence are listed in the next table.
The numerators are recorded as [A249276][3], and the denominators as [A249277][4] in the [OEIS][5]. I've calculated the sequence in the range , the elements are listed [here][6].
The following theorem is proved in general in the paper by Hu and Mortici , and for the special cases and in the paper by Alzer and Berg .
For all integer , we have
>
The special case answers my question.
----------
**References**
1. H. Alzer, C. Berg, [*Some classes of completely monotonic functions*][7], Annales Academiæ Scientiarum Fennicæ Mathematica, 27, 2002, 445–460. ([pdf][8])
2. T. Carleman, [*Sur les fonctions quasi-analytiques*][9], Comptes rendus du Ve Congres des Mathematiciens Scandinaves, Helsinki (Helsingfors), 1922, 181–196.
3. S. Finch, [*Carleman's Inequality*][10], manuscript, 2013.
4. M. Gyllenberg, Y. Ping, [*On a conjecture by Yang*][11], Journal of Mathematical Analysis and Applications, 264(2), 2001, 687–690.
5. Y. Hu, C. Mortici, [*On the coefficients of an expansion of related to Carleman's inequality*][12], manuscript, arXiv:1401.2236, 2014.
6. M. Johansson, L.-E. Persson, A. Wedestig, [*Carleman's inequality - History, proofs and some new generalizations*][13], Journal of Inequalities in Pure and Applied Mathematics, 4(3), 2003.
7. X. Yang, [*On Carleman’s inequality*][14], Journal of Mathematical Analysis and Applications, 253(2), 2001, 691–694.
8. X. Yang, [*Approximations for constant and Their Applications*][15], Journal of Mathematical Analysis and Applications, 262(2), 2001, 651–659.
9. H. Yue, [*A Strengthened Carleman’s Inequality*][16], Communications in Mathematical Analysis, 1(2), 2006, 115–119. ([pdf][17])
----------
**Related**
This answer is related to the following stackexchange questions:
- [On the search for an explicit form of a particular integral][18]
- [Two curious “identities” on , and ][19]
- [Evaluating an integral using real methods][20]
[1]: https://en.wikipedia.org/wiki/Torsten_Carleman
[2]: http://mathworld.wolfram.com/CarlemansInequality.html
[3]: http://oeis.org/A249276
[4]: http://oeis.org/A249277
[5]: http://oeis.org/
[6]: http://mathb.in/145272?key=677ade0f6738b4bc973f3955937b952544a82225
[7]: http://www.acadsci.fi/mathematica/Vol27/alzer.html
[8]: http://www.acadsci.fi/mathematica/Vol27/alzer.pdf
[9]: https://www.researchgate.net/publication/247679096_Sur_les_functions_quasi-analytiques
[10]: https://oeis.org/A219245/a219245.pdf
[11]: http://www.sciencedirect.com/science/article/pii/S0022247X01977029
[12]: https://arxiv.org/abs/1401.2236
[13]: https://www.researchgate.net/publication/237246073_Carleman%27s_inequality-history_proofs_and_some_new_generalizations
[14]: http://www.sciencedirect.com/science/article/pii/S0022247X00971555
[15]: http://www.sciencedirect.com/science/article/pii/S0022247X01975924
[16]: http://math-res-pub.org/cma/1/2/strengthened-carleman%E2%80%99s-inequality
[17]: https://www.ripublication.com/cma_files/cmav1n2_6.pdf
[18]: https://mathoverflow.net/questions/215816/on-the-search-for-an-explicit-form-of-a-particular-integral
[19]: https://math.stackexchange.com/questions/242587/two-curious-identities-on-xx-e-and-pi
[20]: https://mathoverflow.net/questions/226870/evaluating-an-integral-using-real-methods
This is something I am absolutely cautious to share, but I feel the need unveil anyway. I have lost some will to believe this is a significant result due to doubts expressed by other mathematicians who I have corresponded with, so this led me to construe this might not be important after all. I have read about these integrals supposedly popping up in the work of Ramanujan, though I have found no reliable source, and Bruce Berndt still has yet to get back to me.:/
This project started when I was curious what parametrizations would be needed to encapsulate impressive information about the following integrals:
However, as it turns out, I was able to show they are related via the following theorem.
For , and ,
where is a primitive polynomial of of degree , and is the Bhargava factorial over the set of primes.
In addition, these rational numbers satisfy a neat recurrence relation, of which Carleman's inequality is a [special case][1] of:
Using these results, we can unlock a whole class of crazy stuff:
Here are some special values:
I don't want to reveal too much anyway. Enjoy!
[1]: http://www.people.fas.harvard.edu/~sfinch/csolve/crl.pdf
The Ramanujan Cos/Cosh Identity is stated [here](http://mathworld.wolfram.com/RamanujanCosCoshIdentity.html) as
Then there is a line:
> Equating coefficients of , , and gives
> some amazing identities for the hyperbolic secant.
Those identities are given [here](http://mathworld.wolfram.com/HyperbolicSecant.html).
So I have two questions:
1. How do we get those formulas from the Cos/Cosh identity?
2. Are there similar identities? (similar to Cos/cosh identity)
It will be helpful to start from an explanation of the origin and the proof of the Ramanujan identity. These are hidden (not very deeply) in the theory of elliptic functions.
Indeed, Jacobi elliptic function [has Fourier series](http://dlmf.nist.gov/22.11)
where denotes complete elliptic integral and the complementary one. The Ramanujan Cos/Cosh identity is thus equivalent to showing that
where is the first [elliptic integral singular value](http://mathworld.wolfram.com/EllipticIntegralSingularValue.html) and .
The right hand side of (1) is independent on and is readily shown to be equal to using e.g. formula (3) from the [same page](http://mathworld.wolfram.com/EllipticIntegralSingularValue.html). Therefore it remains to show that for any one has
I leave this last point to you as an exercise (hint: use [Jacobi's imaginary transformation](http://mathworld.wolfram.com/JacobisImaginaryTransformation.html)).
----------
Hopefully it is now clear that one can construct many generalizations of Ramanujan identity. Such constructions would involve two basic ingredients:
- Fourier series of elliptic functions,
- elliptic integral singular values.
Indeed, pick your favorite identity satisfied by the elliptic functions. The first ingredient will transform them into trigonometric series. The second one will allow to replace the elliptic modulus by algebraic numbers and the corresponding half-periods by misteriously-looking combinations of gamma functions of rational arguments.
----------
P.S. The first question is just Taylor expansion in (for instance, set in the Ramanujan identity and see what happens).
I am Brian Diaz, and I am new to the math.stackexchange community.
I have been struggling with attempting to find a closed form of the following series:
Admittedly, I attempted to convert it to a "workable integral", but to no avail. Heck, in the process of converting it to an integral, I am not even sure interchanging the sum and the integral was valid. Nevertheless, this was my result.
This was derived from a problem Ramanujan was working. For those who are interested in the source, you can visit http://mathworld.wolfram.com/RamanujanCosCoshIdentity.html. Note: Even if it does not have a closed form, I am still interested in valuable insight to the problem. In addition, I have been reported by my professor to consider applying residue theory, though he his not so sure what the result would be.
Thank you so much for your support, and I hope you do have a blessed day!
The closed form involves Jacobi elliptic function , which has [Fourier series](http://dlmf.nist.gov/22.11)
where denotes complete elliptic integral and the complementary one.
Now if we denote the first [elliptic integral singular value](http://mathworld.wolfram.com/EllipticIntegralSingularValue.html) and
the sum can be expressed as
**P.S.** To check the answer with Mathematica, note that the latter uses instead of in the arguments of and . For example, is evaluated with .
**P.P.S** This transforms the proof of Ramanujan cos/cosh identity into a one-line calculation involving [Jacobi imaginary transformation](http://mathworld.wolfram.com/JacobisImaginaryTransformation.html) for , as explained [here](https://math.stackexchange.com/a/955420/73025).
Rather than relying on the consequences of Schanuel's conjecture, I set about using the same ideas Apery had used to construct integer arguments converging fast enough to show is irrational in a form Beukers had introduced. I'm sure someone out there can crack what I have so far.
I will be using the following facts:
>**Theorem 1**: Suppose the complex-valued function has a power series with positive radius of convergence of the form
Then
Note that is a polynomial of degree .
>**Theorem 2**: Let and ; then
The above can be shown by applying contour integration and residue theorem to the above function.
> **Theorem 3**: For , be the set of primes, and let
> Then, for integer , is an integer for .
This factorial like function is borrowed from Manjul Bhargava's work on the general factorial function.
>**Theorem 4** Let ; then where and is the Euler-Mascheroni constant.
If we let be a polynomial of degree with integer coefficients and let
We have the following inequality, in the form of Dirichlet's irrationality criterion,
where . Of course, we can apply Theorem 4, and have something more familiar to work with.
>Question: Can we construct a polynomial such that, for large ,
If there does exist one, then, for , the number is irrational. Letting , and the result follows.
I've been at this problem for some time, with no further progress. Frankly, I don't know what to do at all. If it helps, I've considered the shifted Legendre polynomials, as Beukers had done, though to no avail.
Most of what I've seen regarding the nature of constructing a polynomial is that it belongs to the family of *orthogonal polynomials*.
God bless.
This isn't really an answer as much as it is an "expanded" comment.
Consider, for integer ,
Given
We have
where . Furthermore, we have
Let
So that we have
Now, observing the bound in question, applying Theorem 4, and letting , we have
If we ignore the term, we have that
where . If we consider such that , and applying Stirling's approximation to the left-most term (-ish), for large , then the whole expression above tends to . Now, it is left to consider the term, though I have a bad feeling about it. :/
来源:https://mathoverflow.net/questions/226875/proving-the-irrationality-of-pi-e-and-pi-e
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix