第一届熊赛试题解答
\documentclass[11pt]{amsart}
%\usepackage{color,graphicx}
%\usepackage{mathrsfs,amsbsy}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{graphicx}
\usepackage{amsthm}
\usepackage{enumerate}
\usepackage[mathscr]{eucal}
\usepackage{mathrsfs}
\usepackage{verbatim}
%\usepackage[notcite,notref]{showkeys}
% showkeys make label explicit on the paper
\makeatletter
\@namedef{subjclassname@2010}{%
\textup{2010} Mathematics Subject Classification}
\makeatother
\numberwithin{equation}{section}
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{defn}[theorem]{Definition}
\theoremstyle{plain}
\newtheorem{thmsub}{Theorem}[subsection]
\newtheorem{lemmasub}[thmsub]{Lemma}
\newtheorem{corollarysub}[thmsub]{Corollary}
\newtheorem{propositionsub}[thmsub]{Proposition}
\newtheorem{defnsub}[thmsub]{Definition}
\numberwithin{equation}{section}
\theoremstyle{remark}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{remarks}{Remarks}
\renewcommand\thefootnote{\fnsymbol{footnote}}
%dont use number as footnote symbol, use this command to change
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\vol}{vol}
\DeclareMathOperator{\diag}{diag}
\DeclareMathOperator{\tr}{tr}
\begin{document}
\date{}
\title
{This is the Title}
\author{Name}
\address{School of Mathematical Sciences\\
University of Science and Technology of China\\
Hefei, 230026\\ P.R. China\\}
\email{email}
\begin{abstract} Briefly describe the topic. \end{abstract}\begin{abstract} Briefly describe the topic. \end{abstract}
\subjclass[2010]{}
\keywords{}
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
This section is the introduction to the paper.\\\\
1. Suppose Sn=a1+⋯+anSn=a1+⋯+an, and Tn=S1+⋯+SnTn=S1+⋯+Sn. If limn→∞1nTn=slimn→∞1nTn=s and nannan is bounded, then limn→∞Sn=s.limn→∞Sn=s.
\begin{proof}
We may assume that limn→∞1nTn=0limn→∞1nTn=0, or we can replace a1a1 by a1−sa1−s. For ∀ε>0∀ε>0, there is a large number NN, ∀n≥N∀n≥N, we have |Tn|≤εn.|Tn|≤εn. Since
Tn+k−Tn=Sn+1+⋯+Sn+kTn+k−Tn=Sn+1+⋯+Sn+k
=kSn+(kan+1+(k−1)an+2+⋯+2an+k−1+an+k),=kSn+(kan+1+(k−1)an+2+⋯+2an+k−1+an+k),
we have
kSn=Tn+k−Tn−(kan+1+(k−1)an+2+⋯+2an+k−1+an+k).kSn=Tn+k−Tn−(kan+1+(k−1)an+2+⋯+2an+k−1+an+k).
Suppose |nan|≤C|nan|≤C, then
k|Sn|≤(2n+k)ε+C(kn+1+k−1n+2+⋯+1n+k)≤(2n+k)ε+Ck2n,k|Sn|≤(2n+k)ε+C(kn+1+k−1n+2+⋯+1n+k)≤(2n+k)ε+Ck2n,
or equivalent,
|Sn|≤(2nk+1)ε+Ckn.|Sn|≤(2nk+1)ε+Ckn.
Take k=[√εn]>12√εnk=[√εn]>12√εn, then we have
|Sn|≤(4√ε+1)ε+C√ε=(4+√ε+C)√ε.|Sn|≤(4√ε+1)ε+C√ε=(4+√ε+C)√ε.
\end{proof}
2. Suppose ff is a real value function on RR, and f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y) for ∀x,y∈R∀x,y∈R. If the set {(x,f(x)):x∈R}{(x,f(x)):x∈R} is not dense in R2R2, then ff is continuous.
\begin{proof}
In fact, we have f(x)≡f(1)xf(x)≡f(1)x. It is not hard to see f(rx)=rf(x)f(rx)=rf(x) for x∈R,r∈Qx∈R,r∈Q. We denote c=f(1)c=f(1), then f(r)=crf(r)=cr for r∈Qr∈Q. If f(x)≡cxf(x)≡cx is false, then there exists a number x0∈R−Qx0∈R−Q, s.t. y0=f(x0)≠cx0y0=f(x0)≠cx0. Then we have
f(x0s+r)=y0s+cr=c(x0s+r)+(y0−cx0)s,∀s,t∈Q.f(x0s+r)=y0s+cr=c(x0s+r)+(y0−cx0)s,∀s,t∈Q.
Fix y∈Ry∈R. For ∀ε>0∀ε>0, there is a number s∈Qs∈Q, s.t. |s(y0−cx0)−y|<ε|s(y0−cx0)−y|<ε, then |s|<|y|+ε|y0−cx0|≤|y|+1|y0−cx0|=C|s|<|y|+ε|y0−cx0|≤|y|+1|y0−cx0|=C. Take r∈Qr∈Q s.t. |x0+r|<ε|x0+r|<ε, we have
f(x0+r)=c(x0+r)+(y0−cx0),f(x0+r)=c(x0+r)+(y0−cx0),
and
f(s(x0+r))=sc(x0+r)+s(y0−cx0),f(s(x0+r))=sc(x0+r)+s(y0−cx0),
then |s(x0+r)|≤Cε|s(x0+r)|≤Cε and
|f(s(x0+r))−y|≤|sc(x0+r)|+|s(y0−cx0)−y|<(Cc+1)ε.|f(s(x0+r))−y|≤|sc(x0+r)|+|s(y0−cx0)−y|<(Cc+1)ε.
Fix (x,y)∈R2(x,y)∈R2. For ∀ε>0∀ε>0, there exists a number a∈Ra∈R s.t. |a|<ε|a|<ε, and |f(a)−(y−cx)|<ε|f(a)−(y−cx)|<ε. Take r∈Qr∈Q s.t. |x−r|<ε|x−r|<ε, we have
f(a+r)=f(a)+cr=f(a)+cx+c(r−x)f(a+r)=f(a)+cr=f(a)+cx+c(r−x)
then |(a+r)−x|<2ε|(a+r)−x|<2ε and
|f(a+r)−y|=|f(a)−(y−cx)|+|c(r−x)|<(1+c)ε.|f(a+r)−y|=|f(a)−(y−cx)|+|c(r−x)|<(1+c)ε.
It is a contradiction.
\end{proof}
3. Suppose Ω⊂CΩ⊂C is a domain, and un=Refnun=Refn, where fn∈H(Ω)fn∈H(Ω). If {un}{un} is uniform convergence on arbitrary compact subset of ΩΩ, and {fn(z0)}{fn(z0)} is convergence for some z0∈Ωz0∈Ω. Prove that {fn}{fn} is uniform convergence on arbitrary compact subset of ΩΩ.
\begin{proof}
Since the compact set has a finite open covering property, we only need to consider the case Ω=DΩ=D. We can obtain the conclusion by the Borel-Carathˊe´eodory lemma: Suppose f∈H(D)f∈H(D). Let M(r)=max|z|=r|f(z)|M(r)=max|z|=r|f(z)|, A(r)=max|z|=rRef(z)A(r)=max|z|=rRef(z), then for 0<r<R<10<r<R<1, we have
M(r)≤2rR−rA(R)+R+rR−r|f(0)|.M(r)≤2rR−rA(R)+R+rR−r|f(0)|.
\end{proof}
4. Suppose Ω⊂CΩ⊂C is a convex domain, and f∈H(Ω)f∈H(Ω). If Ref′(z)≥0Ref′(z)≥0 for ∀z∈Ω∀z∈Ω and ff is not constant function, then ff is injective.
\begin{proof}
Consider e−f′(z)∈H(Ω)e−f′(z)∈H(Ω), then |e−f′(z)|=e−Ref′(z)≤1|e−f′(z)|=e−Ref′(z)≤1. If Ref′(z0)=0Ref′(z0)=0 for some z0∈Ωz0∈Ω, then e−f′(z)=conste−f′(z)=const, or f′(z)=constf′(z)=const by the maximum principle. That is to say f(z)=czf(z)=cz with c≠0c≠0, then ff is injective. If Ref′(z)>0Ref′(z)>0 for ∀z∈Ω∀z∈Ω, then for ∀z1,z2∈Ω∀z1,z2∈Ω with z1≠z2z1≠z2, we have
f(z2)−f(z1)=∫z2z1f′(z)dz=(z2−z1)∫10f′(z1+t(z2−z1))dt,f(z2)−f(z1)=∫z2z1f′(z)dz=(z2−z1)∫10f′(z1+t(z2−z1))dt,
then
Ref(z2)−f(z1)z2−z1=∫10Ref′(z1+t(z2−z1))dt>0.Ref(z2)−f(z1)z2−z1=∫10Ref′(z1+t(z2−z1))dt>0.
\end{proof}
5. Prove the linear span of tne−t,n=0,1,2,⋯tne−t,n=0,1,2,⋯ is dense in L2(0,∞)L2(0,∞).
\begin{proof}
Let MM be the closed linear span of tne−t,n=0,1,2,⋯tne−t,n=0,1,2,⋯. Take any φ∈M⊥φ∈M⊥, we have
∫∞0tne−tφ(t)dt=0,n=0,1,2,⋯.∫∞0tne−tφ(t)dt=0,n=0,1,2,⋯.
Let zz be a complex with ℑ z>−1I z>−1, and
f(z)=∫∞0eizte−tφ(t)dt.f(z)=∫∞0eizte−tφ(t)dt.
Since |ez−1z|≤Cmax{1,e|z|}|ez−1z|≤Cmax{1,e|z|}, we have
f′(z)=limh→0f(z+h)−f(z)h=limh→0∫∞0eiht−1heizte−tφ(t)dtf′(z)=limh→0f(z+h)−f(z)h=limh→0∫∞0eiht−1heizte−tφ(t)dt
=∫∞0iteizte−tφ(t)dt=∫∞0iteizte−tφ(t)dt
by the dominated convergence theorem. That means ff is analytic. Similarly, we have
f(n)(z)=∫∞0intneizte−tφ(t)dt.f(n)(z)=∫∞0intneizte−tφ(t)dt.
Since f(n)(0)=in∫∞0tne−tφ(t)dt=0,n=0,1,2,⋯f(n)(0)=in∫∞0tne−tφ(t)dt=0,n=0,1,2,⋯, we have f(z)≡0f(z)≡0, that means eizte−t∈Meizte−t∈M. According to the Weierstrass approximation theorem, every continuous periodic function h(t)h(t) is the uniform limit of trigonometric polynomials, we can get h(t)e−t∈Mh(t)e−t∈M. Let g(t)g(t) be a continuous function with compact support, and g1(t)=g(t)etg1(t)=g(t)et. Denote by h(t)h(t) a TT periodic function such that
h(t)≡g1(t),t∈[0,T],h(t)≡g1(t),t∈[0,T],
where TT is large enough so that the support of g1(t)g1(t) is contained in the interval [0,T][0,T]. Then
|g1(t)−h(t)|≤||g1||L∞χ(T,∞)(t),|g1(t)−h(t)|≤||g1||L∞χ(T,∞)(t),
so that
|g(t)−h(t)e−t|≤||g1||L∞e−tχ(T,∞)(t).|g(t)−h(t)e−t|≤||g1||L∞e−tχ(T,∞)(t).
Let T→∞T→∞, we can get g(t)∈Mg(t)∈M. Since the set of all continuous functions with compact support is dense in L2(0,∞)L2(0,∞), we have M=L2(0,∞)M=L2(0,∞).
\end{proof}
6. Let AA is a unital commutative Banach algebra that is generated by {1,x}{1,x} for some x∈Ax∈A. Then the complement set of σ(x)σ(x) is connected.
\begin{proof}
Let us decompose σ(x)cσ(x)c into its connected components, obtaining an unbounded component Ω∞Ω∞ together with a sequence of holes Ω1,Ω2,⋯,Ω1,Ω2,⋯,
σ(x)c=Ω∞∪Ω1∪Ω2∪⋯.σ(x)c=Ω∞∪Ω1∪Ω2∪⋯.
Let Ω=Ω1∪Ω2∪⋯Ω=Ω1∪Ω2∪⋯. If σ(x)cσ(x)c is not connected, the Ω≠∅Ω≠∅. Suppose λ∈Ωλ∈Ω, then for arbitrary polynomial p(z)p(z), since p(z)p(z) is analytic, we have
|p(λ)|≤maxz∈σ(x)|p(z)|=maxω∈Sp(A)|ω(p(x))|≤||p(x)|||p(λ)|≤maxz∈σ(x)|p(z)|=maxω∈Sp(A)|ω(p(x))|≤||p(x)||
by the maximum principle and Gelfand theorem. If we defind
ω:p(x)↦p(λ),ω:p(x)↦p(λ),
then ωω is bounded on {p(x)}{p(x)}. Since {p(x)}{p(x)} is dense in AA, ωω have unique extension on AA, and ω(xy)=ω(x)ω(y)ω(xy)=ω(x)ω(y), that means ω∈Sp(A)ω∈Sp(A). Then λ=ω(x)∈σ(x)λ=ω(x)∈σ(x), it is a contradiction.
\end{proof}
7. Suppose XX is a compact Hausdorff space. ΩΩ is a family of colsed connected subset of XX, and ΩΩ is totally order with respect to inclusion relation. Then Y=∩{A:A∈Ω}Y=∩{A:A∈Ω} is connected.
\begin{proof}
If YY is not connected, then are open set BB and CC, with B∩C=∅B∩C=∅, B∩Y≠∅B∩Y≠∅ and C∩Y≠∅C∩Y≠∅. Consider the set Y1=∩{A−(B∪C):A∈Ω}Y1=∩{A−(B∪C):A∈Ω}, then Y1=Y−(B∪C)=∅Y1=Y−(B∪C)=∅. Since AA is connected, if A−(B∪C)=∅A−(B∪C)=∅, or A⊂B∪CA⊂B∪C, then A⊂BA⊂B, or A⊂CA⊂C, it is impossible. Thus A−(B∪C)≠∅A−(B∪C)≠∅. Since A−(B∪C)A−(B∪C) is compact, and finite intersection is not empty, then Y1≠∅Y1≠∅. It is a contradiction.
\end{proof}
8. Suppose the measurable set A⊂RA⊂R with 0<m(A)<∞0<m(A)<∞. Let f(x,r)=m(A∩[x−r,x+r])/2rf(x,r)=m(A∩[x−r,x+r])/2r, then there exists x∈Rx∈R s.t.
0<lim infr→0+f(x,r)≤lim supr→0+f(x,r)<1.0<liminfr→0+f(x,r)≤limsupr→0+f(x,r)<1.
\begin{proof}
Since 0<m(A)<∞0<m(A)<∞, there are interval I1,I2I1,I2 with |I1|=|l2|=2r0|I1|=|l2|=2r0 s.t. m(A∩I1)>12|I1|m(A∩I1)>12|I1|, m(A∩I2)<12|I2|m(A∩I2)<12|I2|.
Since f(x,r)f(x,r) is continuous about xx, there exists x0x0 with f(x0,r0)=12f(x0,r0)=12. Since we have
m(A∩[x0−r0,x0+r0])=m(A∩[x0−r0,x0])+m(A∩[x0,x0+r0])=r0,m(A∩[x0−r0,x0+r0])=m(A∩[x0−r0,x0])+m(A∩[x0,x0+r0])=r0,
there exists x1∈[x0−r02,x0+r02]x1∈[x0−r02,x0+r02] with f(x1,r02)=12f(x1,r02)=12. Or equivalently, there exists x1∈Rx1∈R with
|x1−x0|≤r02,f(x1,r02)=12.|x1−x0|≤r02,f(x1,r02)=12.
Similarly, there exists xn∈Rxn∈R with
|xn−xn−1|≤r02n,f(xn,r02n)=12.|xn−xn−1|≤r02n,f(xn,r02n)=12.
Let x=limn→∞xnx=limn→∞xn, then |x−xn|=|∞∑k=n+1(xk−xk−1)|≤∞∑k=n+1|xk−xk−1|≤r02n|x−xn|=|∞∑k=n+1(xk−xk−1)|≤∞∑k=n+1|xk−xk−1|≤r02n. For any r<r0r<r0, there exists unique N≥1N≥1 s.t. r02N≤r<r02N−1r02N≤r<r02N−1. Then we have
[xN+1−r02N+1,xN+1+r02N+1]⊂[x−r02N,x+r02N]⊂[x−r,x+r],[xN+1−r02N+1,xN+1+r02N+1]⊂[x−r02N,x+r02N]⊂[x−r,x+r],
and
f(x,r)=m(A∩[x−r,x+r])2r≥m(A∩[xN+1−r02N+1,xN+1+r02N+1])2r02N−1f(x,r)=m(A∩[x−r,x+r])2r≥m(A∩[xN+1−r02N+1,xN+1+r02N+1])2r02N−1
=14f(xN+1,r02N+1)=18.=14f(xN+1,r02N+1)=18.
On the other hand, we have
m(A∩[x−r,x+r])≤m(A∩[xN+1−r02N+1,xN+1+r02N+1])m(A∩[x−r,x+r])≤m(A∩[xN+1−r02N+1,xN+1+r02N+1])
+m([x−r,x+r]−[xN+1−r02N+1,xN+1+r02N+1])+m([x−r,x+r]−[xN+1−r02N+1,xN+1+r02N+1])
=r02N+1+2r−2r02N+1=2r−r02N+1≤2r−14r=74r,=r02N+1+2r−2r02N+1=2r−r02N+1≤2r−14r=74r,
then
f(x,r)=m(A∩[x−r,x+r])2r≤78.f(x,r)=m(A∩[x−r,x+r])2r≤78.
That is to say
18≤lim infr→0+f(x,r)≤lim supr→0+f(x,r)≤78.18≤liminfr→0+f(x,r)≤limsupr→0+f(x,r)≤78.
\end{proof}
9. Suppose {fn}∞n=1{fn}∞n=1 is a bounded sequence in LpLp with 1≤p<∞1≤p<∞. If fn→ffn→f a.e., then f∈Lpf∈Lp and
limn→∞∫|fn|p−|fn−f|p=∫|f|p.limn→∞∫|fn|p−|fn−f|p=∫|f|p.
\begin{proof}
We denote M=supn≥1∫|fn|p<∞M=supn≥1∫|fn|p<∞.Since fn→ffn→f a.e., we have |fn|p→|f|p|fn|p→|f|p a.e. and by Fatou Lemma
∫|f|p≤lim_n→∞∫|fn|p≤M<∞,∫|f|p≤lim––––n→∞∫|fn|p≤M<∞,
that is to say f∈Lpf∈Lp. For ∀a,b≥0∀a,b≥0, we have
|ap−bp|=pξp−1|a−b|≤pmax{a,b}p−1|a−b||ap−bp|=pξp−1|a−b|≤pmax{a,b}p−1|a−b|
by Lagrange Mean Value Theorem, where ξξ is a real number between aa and bb. Then we obtain
||fn|p−|fn−f|p|≤pmax{|fn|,|fn−f|}p−1|f|.||fn|p−|fn−f|p|≤pmax{|fn|,|fn−f|}p−1|f|.
Fixed ε>0ε>0. Suppose AA is a measurable set with m(A)<∞m(A)<∞, and the follow inequality holds
∫Ac|f|p≤ε.∫Ac|f|p≤ε.
There is a δ>0δ>0 such that
∫B|f|p<ε whenever m(B)<δ∫B|f|p<ε whenever m(B)<δ
by absolute continuity. Since fn→ffn→f a.e. on AA and m(A)<∞m(A)<∞, we can find a measurable subset a⊂Aa⊂A such m(A∖a)<δm(A∖a)<δ and fn→ffn→f uniformly on aa by Egorov Theorem. Then we have
∫a|fn|p−|fn−f|p→∫a|f|p,∫a|fn|p−|fn−f|p→∫a|f|p,
as n→∞n→∞, and
∫ac|f|p=∫A∖a|f|p+∫Ac|f|p<2ε.∫ac|f|p=∫A∖a|f|p+∫Ac|f|p<2ε.
Since the function max{|fn|,|fn−f|}p−1∈Lp′max{|fn|,|fn−f|}p−1∈Lp′, and ||max{|fn|,|fn−f|}p−1||p′=||max{|fn|,|fn−f|}||p−1p≤(3Mp)1p′.||max{|fn|,|fn−f|}p−1||p′=||max{|fn|,|fn−f|}||p−1p≤(3Mp)1p′.
We have
∫ac||fn|p−|fn−f|p|≤p∫acmax{|fn|,|fn−f|}p−1|f|≤p(3M)1p′(∫ac|f|p)1p≤p(3M)1p′(2ε)1p,∫ac||fn|p−|fn−f|p|≤p∫acmax{|fn|,|fn−f|}p−1|f|≤p(3M)1p′(∫ac|f|p)1p≤p(3M)1p′(2ε)1p, by H\"{o}lder inequality. Thus we obtain
¯limn→∞|∫|fn|p−|fn−f|p−∫|f|p|≤(1+p(3M)1p′)(2ε)1p.¯¯¯¯¯¯¯¯limn→∞|∫|fn|p−|fn−f|p−∫|f|p|≤(1+p(3M)1p′)(2ε)1p.
\end{proof}
10. Suppose Dn(t)Dn(t) are the Dirichlet kernels, and FN(t)FN(t) is the NN-th Fejˊe´er kernel given by
FN(t)=D0(t)+⋯+DN−1(t)N.FN(t)=D0(t)+⋯+DN−1(t)N.
Let LN(t)=min(N,π2Nt2)LN(t)=min(N,π2Nt2). Prove
FN(t)=1N1−cosNt1−cost≤LN(t)FN(t)=1N1−cosNt1−cost≤LN(t)
and ∫TLN(t)dt≤4π∫TLN(t)dt≤4π. If f∈L1(T)f∈L1(T) and the NN-th Cesˊa`aro mean of Fourier series is
σN(f)(x)=S0(f)(x)+⋯+SN−1(f)(x)N,σN(f)(x)=S0(f)(x)+⋯+SN−1(f)(x)N,
then σN(f)(x)→f(x)σN(f)(x)→f(x) for every xx in the Lebesgue set of ff.
\begin{proof}
Since DN(t)=N∑n=−Neint=sin(N+12)tsint2DN(t)=N∑n=−Neint=sin(N+12)tsint2, we have
FN(t)=1Nsin2Nt2sin2t2=1N1−cosNt1−cost.FN(t)=1Nsin2Nt2sin2t2=1N1−cosNt1−cost.
Since |DN(t)|≤2N+1|DN(t)|≤2N+1, we can get FN(t)≤NFN(t)≤N. For 0<x<π20<x<π2, we have sinx≥2πxsinx≥2πx, then
FN(t)=1Nsin2Nt2sin2t2≤1N1sin2t2≤π2Nt2.FN(t)=1Nsin2Nt2sin2t2≤1N1sin2t2≤π2Nt2.
That mens FN(t)≤LN(t)FN(t)≤LN(t). And
∫TLN(t)dt=2∫π0LN(t)dt=2∫πN0Ndt+2∫ππNπ2Nt2dt=4π−2πN≤4π.∫TLN(t)dt=2∫π0LN(t)dt=2∫πN0Ndt+2∫ππNπ2Nt2dt=4π−2πN≤4π.
Since ∫TFN(t)=1∫TFN(t)=1 and FN(t)≤LN(t)FN(t)≤LN(t), we can get {FN(t)}{FN(t)} is an approximation to the identity, then σN(f)(x)=(f∗FN)(x)→f(x)σN(f)(x)=(f∗FN)(x)→f(x) for every xx in the Lebesgue set of ff.
\end{proof}
11. Suppose the sequence {an}{an} satisfying an+1=(4n−2)an+an−1an+1=(4n−2)an+an−1. Prove that {an}{an} is convergence if and only if
(e−1)a0+(e+1)a1=0.(e−1)a0+(e+1)a1=0.
\begin{proof}
If {an}{an} is convengence and not vanishing, then it is obvious that anan+1<0anan+1<0. We can assume a0>0a0>0, a1<0a1<0, then a2n>0a2n>0, a2n+1<0a2n+1<0. Let bn=4n−2bn=4n−2 and
an=pn−2a1+qn−2a0,n≥2.an=pn−2a1+qn−2a0,n≥2.
Since a2=b1a1+a0a2=b1a1+a0, and a3=(1+b1b2)a1+b2a0a3=(1+b1b2)a1+b2a0, we can get
p0=b1,p1=1+b1b2,q0=1,q1=b2.p0=b1,p1=1+b1b2,q0=1,q1=b2.
Since an+2=bn+1an+1+an=bn+1(pn−1a1+qn−1a0)+(pn−2a1+qn−2a0)=(bn+1pn−1+pn−2)a1+(bn+1qn−1+qn−2)a0an+2=bn+1an+1+an=bn+1(pn−1a1+qn−1a0)+(pn−2a1+qn−2a0)=(bn+1pn−1+pn−2)a1+(bn+1qn−1+qn−2)a0, we can get
pn=bn+1pn−1+pn−2,qn=bn+1qn−1+qn−2.pn=bn+1pn−1+pn−2,qn=bn+1qn−1+qn−2.
That is to say
pnqn=[b1,b2,⋯,bn+1]=b1+1b2+1⋯+1bn+1,pnqn=[b1,b2,⋯,bn+1]=b1+1b2+1⋯+1bn+1,
and we have pnqn→[b1,b2,⋯]pnqn→[b1,b2,⋯] as n→∞n→∞. Since
a2n+1=p2n−1a1+q2n−1a0<0,a2n+2=p2na1+q2na0>0,a2n+1=p2n−1a1+q2n−1a0<0,a2n+2=p2na1+q2na0>0,
we have
p2nq2n(−a1)<a0<p2n−1q2n−1(−a1),p2nq2n(−a1)<a0<p2n−1q2n−1(−a1),
Let n→∞n→∞, we can get
a0+[b1,b2,⋯]a1=0.a0+[b1,b2,⋯]a1=0.
On the contrary, if a0+[b1,b2,⋯]a1=0a0+[b1,b2,⋯]a1=0, since |[b1,b2,⋯]−pnqn|<1qnqn+1|[b1,b2,⋯]−pnqn|<1qnqn+1, we can get
|an|=|a1|⋅|pn−2−qn−2[b1,b2,⋯]|≤|a1|qn−1→0.|an|=|a1|⋅|pn−2−qn−2[b1,b2,⋯]|≤|a1|qn−1→0.
Since
e−1e+1=[0,2,6,10,⋯]=12+16+110+1⋯,e−1e+1=[0,2,6,10,⋯]=12+16+110+1⋯,
we can get [b1,b2,⋯]=e+1e−1[b1,b2,⋯]=e+1e−1, then a0+[b1,b2,⋯]a1=0a0+[b1,b2,⋯]a1=0 is equivalent to
(e−1)a0+(e+1)a1=0.(e−1)a0+(e+1)a1=0.
\end{proof}
12. Suppose {xn}{xn} satisfying x1=1x1=1, xn+1=xn+1Snxn+1=xn+1Sn, where Sn=x1+⋯+xnSn=x1+⋯+xn. Prove that\\
(a) x2n−2lnSnx2n−2lnSn is increasing and x2n−2lnSn−1x2n−2lnSn−1 is decreasing for n≥2n≥2.\\
(b) x2n−2lnn−lnlnnx2n−2lnn−lnlnn is convengence.\\
(c) limn→∞lnnlnlnn(xn√2lnn−1)=14limn→∞lnnlnlnn(xn√2lnn−1)=14.
\begin{proof}
For n≥2n≥2, we have
(x2n+1−2lnSn)−(x2n−2lnSn−1)=(xn+1Sn)2−x2n+2lnSn−1Sn(x2n+1−2lnSn)−(x2n−2lnSn−1)=(xn+1Sn)2−x2n+2lnSn−1Sn
=2xnSn+1S2n+2ln(1−xnSn)<2xnSn+1S2n−2(xnSn+x2n2S2n)=1−x2n2S2n≤0.=2xnSn+1S2n+2ln(1−xnSn)<2xnSn+1S2n−2(xnSn+x2n2S2n)=1−x2n2S2n≤0.
Similarly,
(x2n+1−2lnSn+1)−(x2n−2lnSn)=(xn+1Sn)2−x2n−2lnSn+1Sn
=2xnSn+1S2n−2ln(1+xn+1Sn)>2xnSn+1S2n−2(xn+1Sn−x2n+12S2n+x3n+13S3n)
=x2n+1−1S2n−23x3n+1S3n=x2n+1S2n(1−1x2n+1−2xn+13Sn).
Since x1=1,x2=2, and S1=1,S2=3, we have
xn+1−Sn=xn+1Sn−Sn=1Sn−Sn−1≤1S2−S1=−12<0,
that means 2xn+13Sn≤23, then
1−1x2n+1−2xn+13Sn>13−1x2n+1>0.
That implys (a).\\
Since x2n−2lnSn is increasing, we can get x2n−2lnSn≥x22−2lnS2=4−2ln3>1. Since xn≥1, we have Sn≥n, then
x2n≥1+2lnSn≥1+2lnn.
Since x2n−2lnSn−1 is decreasing, we can get x2n−2lnSn≤x2n+1−2lnSn≤x22−2lnS2=4, then
x2n≤4+2lnSn.
Since Sn≥n, we can get xn≤1+1+12+⋯+1n−1≤2+lnn, then Sn≤nxn≤n(2+lnn), and
x2n≤4+2lnn+2ln(2+lnn).
Thus, it is obvious that
xn√lnn→√2,
and we have
Snn√lnn→√2
by Stolz formula. Since x2n−2lnSn≤4, we can get x2n−2lnSn is convengence, then
x2n−2lnn−lnlnn=x2n−2lnSn+2lnSnn√lnn
is convengence. That implys (b).\\
Since x2n=2lnn+lnlnn+a+o(1), we can get
x2n2lnn−1=lnlnn2lnn+a+o(1)2lnn,
then
lnnlnlnn(xn√2lnn−1)=(xn√2lnn+1)−1lnnlnlnn(x2n2lnn−1)
→12⋅12=14.
Moreover, we have
limn→∞lnlnn(lnnlnlnn(xn√2lnn−1)−14)=a4.
\end{proof}
13. Suppose f∈C[0,∞) and for ∀a≥0, we have
limx→∞f(x+a)−f(x)=0.
Then there exist g∈C[0,∞) and h∈C1[0,∞) with f=g+h, such that
limx→∞g(x)=0, limx→∞h′(x)=0.
\begin{proof}
In fact, f is uniformly continuous. Otherwise, there are two sequences {xn}∞n=1, {yn}∞n=1 and a positive ε, such that
xn,yn→∞,|xn−yn|→0,|f(xn)−f(yn)|≥ε0
as n→∞. Consider the functions
φn(x)=f(xn+x)−f(xn)
and
ϕn(x)=f(yn+x)−f(yn)
defined on the interval [0,1]. Then we have
φ(x),ϕ(x)→0
as n→∞ due to limx→∞f(x+a)−f(x)=0. For ∀0<ε<12, there is a set Aε∈[0,1] such that m([0,1]∖Aε)<ε and φn,ϕn→0 uniformly on Aε by Egorov Theorem. Take a integer N such that ∀n≥N and ∀x∈Aε, we have |xn−yn|<1−2ε and
|φn(x)|≤ε03,|ϕn(x)|≤ε03.
Since m((xn+Aε)∩(yn+Aε))=m(xn+Aε)+m(yn+Aε)−m((xn+Aε)∪(yn+Aε))≥2(1−Aε)−(1+|xn−yn|)=1−2ε−|xn−yn|>0, there is a point x∈(xn+Aε)∩(yn+Aε). We have x−xn,x−yn∈Aε, and then
|φ(x−xn)|=|f(x)−f(xn)|≤ε03,|ϕ(x−yn)|=|f(x)−f(yn)|≤ε03,
thus |f(xn)−f(yn)|≤23ε0, it is a contradiction.
Let h(x)=∫x+1xf(t)dt, and g(x)=f(x)−h(x), then we have
h′(x)=f(x+1)−f(x)→0
as x→∞. Since f is uniformly continous, there is positive M such ∀x,y≥0 with |x−y|≤1, we have |f(x)−f(y)|≤M. Since f(x)−f(x+t)→0 as x→∞ and |f(x)−f(x+t)|≤M for ∀t∈[0,1], by DCT, we have
g(x)=∫10f(x)−f(x+t)→0 as n→∞.
\end{proof}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{thebibliography}{99}
%\bibitem{AF12}%
%Antunes, P., Freitas, P.: Optimal spectral rectangles and lattice ellipses. \emph{Proc. Royal Soc. London Ser. A.} \textbf{469} (2012), 20120492.
\end{thebibliography}
\end{document}
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix