\section{Trigonometric Substitutions with Broad Results}%32
\markboth{Articles}{Trigonometric Substitutions with Broad Results}
具有广泛结果的三角代换
\vspace{4.2cm}
Often the key to solve some intricate algebraic inequality is to simplify it with
a trigonometric substitution.
When we make a trigonometric substitution the
problem may reduce so much that we can see a direct solution immediately.
Besides, trigonometric functions have well-known properties that may help in
solving such inequalities.
As a result, many algebraic problems can be solved
by using an inspired substitution.
We start by introducing such substitutions.
After that we present some
well-known trigonometric identities and inequalities.
Finally, we discuss some
Olympiad problems and leave others for the reader to solve.
通常,解决一些复杂代数不等式的关键是用三角代换来简化它。当我们作三角替换时,问题可能会减少很多,我们马上就能看到一个直接的解答。此外,三角函数具有熟知的性质,它们可以帮助解决这些不等式。因此,用一个启发性的代换方法可以解决许多代数问题。
我们从引入这样的代换开始。在此之后,我们提出了一些著名的三角恒等式和不等式。最后,我们讨论了一些奥林匹克问题,并留给读者去解决。
定理1. 令α,β,γ为(0,π)中的角度.那么α,β,γ是某三角形的内角当且仅当
$$\tan\frac{\alpha }{2}\tan\frac{\beta }{2}+\tan \frac{\beta }{2}\tan \frac{\gamma }{2}
+\tan \frac{\gamma }{2}\tan \frac{\alpha }{2}=1.$$
证明.首先注意到若α=β=γ,则命题显然成立。不失一般性,假设α≠β.因为0<α+β<2π,由此可知(−π,π)中存在某个角,记为γ′, 使得α+β+γ′=π.利用加法公式和这样的事实
tanγ′2=cotα+β2=1−tanα2tanβ2tanα2+tanβ2,
可得
tanα2tanβ2+tanβ2tanγ′2+tanγ′2tanα2=1.\eqno(1)
现假设
tanα2tan\ds\fβ2+tan\ds\fβ2tan\ds\fγ2+tan\ds\fγ2tan\ds\fα2=1,\eqno(2)
对某些(0,π)中的α,β,γ成立。我们将证明γ=γ′, 并且这将表明α,β,γ是某个三角形的内角。
(1) 减去 (2)可得
tan\ds\fγ2=tan\ds\fγ′2.因此
|\ds\fγ−γ′2|=kπ
对某个非负整数k成立.但是
|\ds\fγ−γ′2|≤|\ds\fγ2|+|\ds\fγ′2|<π,故我们可知k=0.也就是γ=γ′, 这便是所需结果。
定理2.令α,β,γ为(0,π)中的角.那么α,β,γ是三角形的内角当且仅当
sin2\ds\fα2+sin2\ds\fβ2+sin2\ds\fγ2+2sin\ds\fα2sin\ds\fβ2sin\ds\fγ2=1.
因为0<α+β<2π, 在(−π,π)中存在某个角,记为γ′使得α+β+γ′=π.
利用积化和差和倍角公式,我们得到
sin2\ds\fγ′2+2sin\ds\fα2sin\ds\fβ2sin\ds\fγ′2=cos\ds\fα+β2(cos\ds\fα+β2+2sin\ds\fα2sin\ds\fβ2)
=cos\ds\fα+β2cos\ds\fα−β2=\ds\fcosα+cosβ2=\ds\f(1−2sin2\ds\fα2)+(1−2sin2\ds\fβ2)2
=1−sin2\ds\fα2−sin2\ds\fβ2.
因此
sin2\ds\fα2+sin2\ds\fβ2+sin2\ds\fγ′2+2sin\ds\fα2sin\ds\fβ2sin\ds\fγ′2=1.\eqno(3)
现假设
sin2\ds\fα2+sin2\ds\fβ2+sin2\ds\fγ2+2sin\ds\fα2sin\ds\fβ2sin\ds\fγ2=1,\eqno(4)
对某些(0,π)中的α,β,γ成立。(3)减去(4)可得
sin2\ds\fγ2−sin2\ds\fγ′2+2sin\ds\fα2sin\ds\fβ2(sin\ds\fγ2−sin\ds\fγ′2)=0,
即
(sin\ds\fγ2−sin\ds\fγ′2)(sin\ds\fγ2+sin\ds\fγ′2+2sin\ds\fα2sin\ds\fβ2)=0.
第二个因式可以被写成
sin\ds\fγ2+sin\ds\fγ′2+cos\ds\fα−β2−cos\ds\fα+β2=sin\ds\fγ2+cos\ds\fα−β2,
它是明显大于0的。由此得
sin\ds\fγ2=sin\ds\fγ′2,故γ=γ′,这就证明了α,β,γ是某个三角形的内角。
\subsection{代换和转换}
转换1.令α,β,γ为三角形的内角。令A=\ds\fπ−α2,\qB=\ds\fπ−β2,\qC=\ds\fπ−γ2.那么A+B+C=π, 且0≤A,B,C≤\ds\fπ2.
这个变换使我们可以将任意三角形的角度转换成一个锐角三角形的角度。注意到
sin\ds\fα2=cosA,\qcos\ds\fα2=sinA,\qtan\ds\fα2=cotA,\qcot\ds\fα2=tanA,
类似的结果对β和γ也成立。
转换2.令x,y,z为正实数,那么存在一个以a=x+y, b=y+z, c=z+x为边长的三角形。该转换有时被称为对偶原理(Dual Principle).显然,若s=x+y+z,则 (x,y,z)=(s−b,s−c,s−a).
代换1.令a,b,c为正实数,使得ab+bc+ca=1.利用函数
f:(0,\ds\fπ2)→(0,+∞), 且
f(x)=tanx,我们可作如下代换
a=tan\ds\fα2,\qb=tan\ds\fβ2,\qc=tan\ds\fγ2,
其中α,β,γ为某三角形ABC的内角。
{\bf S2.}
Let a,b,c be positive real numbers such that ab+bc+ca=1.
Applying T1 to S1, we have
a=cotA,\qb=cotB,\qc=cotC,
where A,B,C are the angles of an acute triangle.
{\bf S3.}
Let a,b,c be positive real numbers such that a+b+c=abc.
Dividing by abc it follows that
\ds\f1bc+\ds\f1ca+\ds\f1ab=1.
Due to S1, we can substitute
\ds\f1a=tan\ds\fα2,\q\ds\f1b=tan\ds\fβ2,\q\ds\f1c=tan\ds\fγ2,
that is
a=cos\ds\fα2,\qb=cot\ds\fβ2,\qc=cos\ds\fγ2,
where α,β,γ are the angles of a triangle.
{\bf S4.}
Let a,b,c be positive real numbers such that a+b+c=abc.
Applying T1 to S3, we have
a=tanA,\qb=tanB,\qc=tanC,
where A,B,C are the angles of an acute triangle.
{\bf S5.}
Let a,b,c be positive real numbers such that
a2+b2+c2+2abc=1.
Note that since all the numbers are positive it follows that a,b,c<1.
Using the function f:(0,π)→(0,1), with f(x)=sin\ds\fx2,
and recalling Theorem 2, we can substitute
a=sin\ds\fα2,\qb=sin\ds\fβ2,\qc=sin\ds\fγ2,
where α,β,γ are the angles of a triangle.
{\bf S6.}
Let a,b,c be positive real numbers such that a2+b2+c2+2abc=1.
Applying T1 to S5, we have
a=cosA,\qb=cosB,\qc=cosC,
where A,B,C are the angles of an acute triangle.
{\bf S7.}
Let x,y,z be positive real numbers.
Applying T2 to expressions
√\ds\fyz(x+y)(x+z),\q√\ds\fzx(y+z)(y+x),\q√\ds\fxy(z+x)(z+y),
they can be substituted by
√\ds\f(s−b)(s−c)bc,\q√\ds\f(s−c)(s−a)ca,\q√\ds\f(s−a)(s−b)ab,
where a,b,c are the side-lengths of a triangle.
Recall the following identities
sin\ds\fα2=√\ds\f(s−b)(s−c)bc,\qcos\ds\fα2=√\ds\fs(s−a)bc.
Thus our expressions can be substituted by
sin\ds\fα2, sin\ds\fβ2, sin\ds\fγ2,
where α,β,γ are the angles of a triangle.
{\bf S8.}
Analogously to S7, the expressions
√\ds\fx(x+y+z)(x+y)(x+z),\q√\ds\fy(x+y+z)(y+z)(y+x),\q√\ds\fz(x+y+z)(z+x)(z+y),
can be substituted by
cos\ds\fα2, cos\ds\fβ2, cos\ds\fγ2,
where α,β,γ are the angles of a triangle.
We present a list of inequalities and equalities that can be helpful in solving
many problems or simplify them.
\subsection{Well-known Inequalities}
Let α,β,γ be angles of a triangle ABC.
Then
\medskip
1) cosα+cosβ+cosγ≤sin\ds\fα2+sin\ds\fβ2+sin\ds\fγ2≤\ds\f32
\medskip
2) sinα+sinβ+sinγ≤cos\ds\fα2+cos\ds\fβ2+cos\ds\fγ2≤\ds\f3√32
\medskip
3) cosαcosβcosγ≤sin\ds\fα2sin\ds\fβ2sin\ds\fγ2≤\ds\f18
\medskip
4) sinαsinβsinγ≤cos\ds\fα2cos\ds\fβ2cos\ds\fγ2≤\ds\f3√38
\medskip
5) cot\ds\fα2+cot\ds\fβ2+cot\ds\fγ2≥3√3
\medskip
6) cos2α+cos2β+cos2γ≥sin2\ds\fα2+sin2\ds\fβ2+sin2\ds\fγ2≥\ds\f34
\medskip
7) sin2α+sin2β+sin2γ≤cos2\ds\fα2+cos2\ds\fβ2+cos2\ds\fγ2≤\ds\f94
\medskip
8) cotα+cotβ+cotγ≥tan\ds\fα2+tan\ds\fβ2+tan\ds\fγ2≥√3.
\subsection{Well-known Identities}
Let α,β,γ be angles of a triangle ABC.
Then
\medskip
1) cosα+cosβ+cosγ=1+4sin\ds\fα2sin\ds\fβ2sin\ds\fγ2
\medskip
2) sinα+sinβ+sinγ=4cos\ds\fα2cos\ds\fβ2cos\ds\fγ2
\medskip
3) sin2α+sin2β+sin2γ=4sinαsinβsinγ
\medskip
4) sin2α+sin2β+sin2γ=2+2cosαcosβcosγ
\medskip
For arbitrary angles α,β,γ we have
sinα+sinβ+sinγ−sin(α+β+γ)=4sin\ds\fα+β2sin\ds\fβ+γ2sin\ds\fγ+α2
cosα+cosβ+cosγ+cos(α+β+γ)=4cos\ds\fα+β2cos\ds\fβ+γ2cos\ds\fγ+α2.
\subsection{Applications}
{\bf 1.}
Let x,y,z be positive real numbers.
Prove that
\ds\fxx+√(x+y)(x+z)+\ds\fyy+√(y+z)(y+x)+\ds\fzx+√(z+x)(z+y)≤1.
\hfill
(Walther Janous, Crux Mathematicorum)
{\bf Solution.}
The inequality is equivalent to
∑cyc\ds\f11+√\ds\f(x+y)(x+z)x2≤1.
Because the inequality is homogeneous, we can assume that
xy+yz+zx=1.
Let us apply substitution S1:
cyc(x=tan\ds\fα2),
where α,β,γ are angles of a triangle.
We get
\ds\f(x+y)(x+z)x2=\ds\f(tan\ds\fα2+tan\ds\fβ2)(tan\ds\fα2+tan\ds\fγ2)tan2\ds\fα2=\ds\f1sin2\ds\fα2,
and similar expressions for the other terms.
The inequality becomes
\ds\fsin\ds\fα21+sin\ds\fα2+\ds\fsin\ds\fβ21+sin\ds\fβ2+\ds\fsin\ds\fγ21+sin\ds\fγ2≤1,
that is
2≤\ds\f11+sin\ds\fα2+\ds\f11+sin\ds\fβ2+\ds\f11+sin\ds\fγ2.
On the other hand, using the well-known inequality
sin\ds\fα2+sin\ds\fβ2+sin\ds\fγ2≤\ds\f32
and the Cauchy-Schwarz inequality, we have
2≤\ds\f9(1+sin\ds\fα2)+(1+sin\ds\fβ2)+(1+sin\ds\fγ2)≤∑cyc\ds\f11sin\ds\fα2,
and we are done.
{\bf 2.}
Let x,y,z be real numbers greater than 1 such that
\ds\f1x+\ds\f1y+\ds\f1z=2.
Prove that
√x−1+√y−1+√z−1≤√x+y+z.
\hfill
(Iran, 1997)
{\bf Solution.}
Let (x,y,z)=(a+1,b+1,c+1), with a,b,c positive real numbers.
Note that the hypothesis is equivalent to ab+bc+ca+2abc=1.
Then it suffices to prove that
√a+√b+√c≤√a+b+c+3.
Squaring both sides of the inequality and canceling some terms yields
√ab+√bc+√ca≤\ds\f32.
Using substitution S5 we get
(ab,bc,ca)=(sin2\ds\fα2,sin2\ds\fβ2,sin2\ds\fγ2),
where ABC is an arbitrary triangle.
The problem reduces to proving that
sin\ds\fα2+sin\ds\fβ2+sin\ds\fγ2≤\ds\f32,
which is well-known, and can be done using Jensen inequality.
{\bf 3.}
Let a,b,c be positive real numbers such that a+b+c=1.
Prove that
√\ds\fabc+ab+√\ds\fbca+bc+√\ds\fcab+ca≤\ds\f32.
{\bf Solution.}
The inequality is equivalent to
√\ds\fab(c+a)(c+b)+√\ds\fbc(a+b)(a+c)+√\ds\fca(b+c)(b+a)≤\ds\f32.
Substitution S7 replaces the three terms in the inequality by
sin\ds\fα2, sin\ds\fβ2, sin\ds\fγ2.
Thus it suffices to prove
sin\ds\fα2+sin\ds\fβ2+sin\ds\fγ2≤\ds\f32,
which clearly holds.
{\bf 4.}
Let a,b,c be positive real numbers such that
(a+b)(b+c)(c+a)=1.
Prove that
ab+bc+ca≤\ds\f33.
\hfill
(Cezar Lupu, Romania, 2005)
{\bf Solution.}
Observe that the inequality is equivalent to
(∑cycab)3≤(\ds\f34)3(a+b)2(b+c)2(c+a)2.
Because the inequality is homogeneous, we can assume that
ab+bc+ca=1.
We use substitution S1:
cyc(a=tan\ds\fα2),
where α,β,γ are the angles of a triangle.
Note that
(a+b)(b+c)(c+a)=∏(\ds\fcos\ds\fγ2cos\ds\fα2cos\ds\fβ2)=\ds\f1cos\ds\fα2cos\ds\fβ2cos\ds\fγ2.
Thus it suffices to prove that
(\ds\f43)3≤\ds\f1cos2\ds\fα2cos2\ds\fβ2cos2\ds\fγ2,
or
4cos\ds\fα2cos\ds\fβ2cos\ds\fγ2≤\ds\f3√32.
From the identity
4cos\ds\fα2cos\ds\fβ2cos\ds\fγ2=sinα+sinβ+sinγ,
the inequality is equivalent to
sinα+sinβ+sinγ≤\ds\f3√32.
But f(x)=sinx is a concave function on (0,π) and the conclusion follows
from Jensen's inequality.
{\bf 5.}
Let a,b,c be positive real numbers such that a+b+c=1.
Prove that
a2+b2+c2+2√3abc≤1.
\hfill
(Poland, 1999)
{\bf Solution.}
Let
cyc(x=√\ds\fbca).
It follows that cyc(a=yz).
The inequality becomes
x2y2+y2z2+z2x2+2√3xyz≤1,
where x,y,z are positive real numbers such that
xy+yz+zx=1.
Note that the inequality is equivalent to
(xy+yz+zx)2+2√3xyz≤1+2xyz(x+y+z),
or
√3≤x+y+z.
Applying substitution S1
cyc(x=tan\ds\fα2),
it suffices to prove that
tan\ds\fα2+tan\ds\fβ2+tan\ds\fγ2≥√3.
The last inequality clearly holds, as
f(x)=tan\ds\fx2
is convex function on (0,π), and the conclusion follows from Jensen's inequality.
{\bf 6.}
Let x,y,z be positive real numbers.
Prove that
√x(y+z)+√y(z+x)+√z(x+y)≥2√\ds\f(x+y)(y+z)(z+x)x+y+z.
{\bf Solution.}
Rewrite the inequality as
√\ds\fx(x+y+z)(x+y)(x+z)+√\ds\fy(x+y+z)(y+z)(y+x)+√\ds\fz(x+y+z)(z+x)(z+y)≥2.
Applying substitution S8, it suffices to prove that
cos\ds\fα2+cos\ds\fβ2+cos\ds\fγ2≥2,
where α,β,γ are the angles of a triangle.
Using transformation T1
cyc(A=\ds\fπ−α2),
where A,B,C are angles of an acute triangle, the inequality is equivalent to
sinA+sinB+sinC≥2.
There are many ways to prove this fact.
We prefer to use Jordan's inequality, that is
\ds\f2απ≤sinα≤α for all α∈(0,\ds\fπ2).
The conclusion immediately follows.
{\bf 7.}
Let a,b,c∈(0,1) be real numbers such that ab+bc+ca=1.
Prove that
\ds\fa1−a2+\ds\fb1−b2+\ds\fc1−c2≥\ds\f34(\ds\f1−a2a+\ds\f1−b2b+\ds\f1−c2c).
\hfill
(Calin Popa)
{\bf Solution.}
We apply substitution S1 cyc(a=tan\ds\fA2), where A,B,C
are angles of a triangle.
Because a,b,c∈(0,1), it follows that
tan\ds\fA2,tan\ds\fB2,tanC2∈(0,1),
that is A,B,C are angles of an acute triangle.
Note that
cyc(\ds\fa1−a2=\ds\fsin\ds\fA2cos\ds\fA2cosA=\ds\ftanA2).
Thus the inequality is equivalent to
tanA+tanB+tanC≥3(\ds\f1tanA+\ds\f1tanB+\ds\f1tanC).
Now observe that if we apply transformation T1 and the result in Theorem 1, we get
tanA+tanB+tanC=tanAtanBtanC.
Hence our inequality is equivalent to
(tanA+tanB+tanC)2≥3(tanAtanB+tanBtanC+tanAtanC).
This can be written as
\ds\f12(tanA−tanB)2+(tanB−tanC)2+(tanC−tanA)2≥0,
and we are done.
{\bf 8.}
Let x,y,z be positive real numbers.
Prove that
√\ds\fy+zx+√\ds\fz+xy+√\ds\fx+yz≥√\ds\f16(x+y+z)33(x+y)(y+z)(z+x).
\hfill
Vo Quoc Ba Can, Mathematical Reflections, 2007
{\bf Solution.}
Note that the inequality is equivalent to
∑cyc(y+z)√\ds\f(x+y)(z+x)x(x+y+z)≥\ds\f4(x+y+z)√3.
Let use transformation T2 and substitution S8.
We get
cyc((y+z)√\ds\f(x+y)(z+x)x(x+y+z)=\ds\facos\ds\fα2=4Rsin\ds\fα2),
and
\ds\f4(x+y+z)√3=\ds\f4R(sinα+sinβ+sinγ)√3,
where α,β,γ are angles of a triangle with circumradius R.
Therefore it suffices to prove that
\ds\f√32(sin\ds\fα2+sin\ds\fβ2+sin\ds\fγ2)≥sin\ds\fα2cos\ds\fα2+sin\ds\fβ2cos\ds\fβ2+sin\ds\fγ2cos\ds\fγ2.
Because f(x)=cos\ds\fx2
is a concave function on [0,π], from Jensen's inequality we obtain
\ds\f√32≥\ds\f13(cos\ds\fα2+cos\ds\fβ2+cos\ds\fγ2).
Finally, we observe that f(x)=sin\ds\fx2 is an increasing function on [0,π],
while g(x)=cos\ds\fx2 is a decreasing function on [0,π].
Using Chebyshev's inequality, we have
\ds\f13(sin\ds\fα2+sin\ds\fβ2+sin\ds\fγ2)(cos\ds\fα2+cos\ds\fβ2+cos\ds\fγ2)≥∑sin\ds\fα2cos\ds\fα2,
and the conclusion follows.
\subsection{Problems for Independent Study}
{\bf 1.}
Let a,b,c be positive real numbers such that a+b+c=1.
Prove that
\ds\fa√b+c+\ds\fb√c+a+\ds\fc√a+b≥√\ds\f32.
\hfill
(Romanian Mathematical Olympiad, 2005)
{\bf 2.}
Let a,b,c be positive real numbers such that a+b+c=1.
Prove that
√\ds\f1a−1√\ds\f1b−1+√\ds\f1b−1√\ds\f1c−1+√\ds\f1c−1√\ds\f1a−1≥6.
{\bf 3.}
Let a,b,c be positive real numbers such that ab+bc+ca=1.
Prove that
\ds\f1√a+b+\ds\f1√b+c+\ds\f1√c+a≥2+\ds\f1√2.
\hfill
(Le Trung Kien)
{\bf 4.}
Prove that for all positive real numbers a,b,c,
(a2+2)(b2+2)(c2+2)≥9(ab+bc+ca).
\hfill
(APMO, 2004)
{\bf 5.}
Let x,y,z be positive real numbers such that \ds\f1x+\ds\f1y+\ds\f1z=1.
Prove that
√x+yz+√x+yz+√x+yz≥√xyz+√x+√y+√z.
\hfill
(APMO, 2002)
{\bf 6.}
Let a,b,c be positive real numbers.
Prove that
\ds\fb+ca+\ds\fc+ab+\ds\fa+bc≥4(\ds\fab+c+\ds\fbc+a+\ds\fca+b).
\hfill
(Mircea Lascu)
{\bf 7.}
Let a,b,c be positive real numbers, such that
a+b+c=√abc.
Prove that
ab+bc+ca≥9(a+b+c).
\hfill
(Belarus, 1996)
{\bf 8.}
Let a,b,c be positive real numbers such that a+b+c=abc.
Prove that
(a−1)(b−1)(c−1)≤6√3−10.
\hfill
(Gabriel Dospinescu, Marian Tetiva)
{\bf 9.}
Let a,b,c be nonnegative real numbers such that
a2+b2+c2+abc=4.
Prove that
0≤ab+bc+ca−abc≤2.
\hfill
(Titu Andreescu, USAMO, 2001)
\section*{Bibliography}
\bi
\item[{[1]}]
T. Andreescu, Z. Feng,
{\it 103 Trigonometry Problems: From the Training of the USA IMO Team},
Birkhauser, 2004.
\item[{[2]}]
T. Andreescu, V. Cartoaje, G. Dospinescu, M. Lascu,
{\it Old and New Inequalities},
GIL Publishing House, 2004.
\item[{[3]}]
T. Phuong,
{\it Diamonds in Mathematical Inequalities},
Hanoi Publishing House, 2007.
\item[{[4]}]
N.M. Sedrakyan
{\it Geometricheskie Neravenstva},
Yerevan, 2004.
\item[{[5]}]
E. Specht,
{\it Collected Inequalities},
http://www.imo.org.yu/othercomp/Journ/ineq.pdf
\item[{[6]}]
H. Lee,
{\it Topics in Inequalities - Theorems and Techniques}.
\item[{[7]}]
H. Lee,
{\it Inequalities through problems}.
\item[{[8]}]
Crux Mathematicorum and Mathematical Mayhem (Canada).
\ei
\bigskip
\hfill
{\Large Vardan Verdiyan, Yerevan, Armenia}
\hfill
{\Large Daniel Campos Salas, Costa Rica}
%%%%%%%
\newpage
\section{A Factoring Lemma}%33
\markboth{Articles}{A Factoring Lemma}
\vspace{4.2cm}
\subsection{Introduction}
The following classical problem was proposed at the Moldavian Mathematical
Olympiad.
{\bf Problem 1.}
{\it Let a,b,c,d be positive integers with ab=cd.
Prove that a+b+c+d is composite.
}
{\bf Solution.}
Let N=a+b+c+d.
Then
aN=a2+ab+ac+ad.\eqno(1)
Because to ab=cd, we can rewrite (1) as
aN=a2+cd+ac+ad=(a+c)(a+d).
Both a+c and a+d are greater than a, so each contributes a factor greater
than 1 to N.
Thus N is composite.
This solution relies on a clever algebraic trick.
However, there is a more
consistent and motivated solution that relies on the Factoring Lemma.
{\bf Lemma 1.}
{\it Let a,b,c,d be positive integers with ab=cd.
Then there are positive integers m,n,p,q such that gcd(n,p)=1 and
a=mn,\qb=pq,\qc=mp,\qd=nq.
}
{\bf Proof.}
The condition ab=cd can be written as
\ds\fac=\ds\fdb.
Let both fractions have the same representation \ds\fnp
in lowest terms.
Then
m=\ds\fan=\ds\fcp,\qq=\ds\fbp=\ds\fdn.
It is clear that m and q are integers and m,n,p,q have the desired properties.
{\bf Second Solution to Problem 1.}
We can find positive integers m,n,p,q
satisfying the conditions in Lemma 1.
Then
a+b+c+d=mn+pq+mp+nq=(m+n)(p+q),
which explicitly proves that a+b+c+d is composite.
Not only does Lemma 1 make problem 25 trivial, but it also appears to be
useful in many other problems proposed to national and international mathematical
olympiads.
The techniques can be applied in solving equations and
systems of equations over integers.
Interesting results can be obtained when
this lemma is used in connection with Euclidean rings other than the integers.
\subsection{Diophantine Equations}
The problem of Pythagorean triples can be solved using the Factoring Lemma.
{\bf Problem 2.}
{\it Pairwise relatively prime integers a,b,c satisfy
a2+b2=c2.
If a is odd, then there exist integers u and v such that
a=u2−v2 and b=2uv.
}
{\bf Solution.}
Let us write the given condition as
b2=(c−a)(c+a).
By Lemma 1 there are m,n,p,q such that
b=mn=pq, c−a=mp, c+a=nq.
Again, by Lemma 1, there are
x,y,z,w such that
m=xy, n=zw, p=xz, q=yw.
This means that b=xyzw and
a=\ds\fnq−mp2=\ds\fyz2(w2−x2).
Because w2 and x2 are congruent to either 0 or 1 modulo 4 and a is odd, it
follows that
2∣yz.
On the other hand, yz divides both b and 2a, so yz=2.
This finishes the proof.
{\bf Problem 3.}
{\it Pairwise relatively prime positive integers a,b,c satisfy
a2+b2=2c2.
Prove that there are integers u and v such that
a=u2−v2+2uvb=v2−u2±2uvc=u2+v2.
}
{\bf Solution.}
We have
(a−c)(a+c)=(c−b)(c+b).
By Lemma 1, there are m,n,p,q such that
a−c=mn,\qa+c=pq,\qc−b=mp,\qc+b=nq.
We thus have
pq−mn=mp+nq,
implying
p(q−m)=n(q+m).
Again, there are x,y,z,w such that
p=xy,\qq−m=zw,\qn=xz,\qq+m=yw.
Then
a=\ds\f12(mn+pq)=\ds\f12(\ds\fyw−zw2xz+\ds\fzw+yw2xy)=\ds\fxw4(y2+2zy−z2)
and
b=\ds\f12(nq−mp)=\ds\f12(\ds\fyw+zw2xz−\ds\fyw−zw2xy)=\ds\fxw4(−y2+2zy+z2).
It follows that either xw=4 and one of z and y is odd or xw=1 and both z
and y are even.
We then set u=y, v=z or u=\ds\fy2, v=\ds\fz2,
respectively.
{\bf Problem 4.}
{\it Prove that there are no positive integers x,y,z such that
2(x4−y4)=z2.
}
{\bf Solution.}
Suppose there are such x,y,z.
Then consider such a triple with the minimum possible x+y+z.
If two of x,y,z are divisible by a prime r, then
the third number is also divisible by r.
If
x=rx1, y=ry1, z=rz1, then
2r2(x41−y41)=z21.
Hence
r∣z1 and z1=rz2, so
2(x41−y41)=z22.
Then x1,y1,z2 is a smaller triple.
Thus x,y,z must be pairwise relatively prime.
We have
gcd(x2−y2,x2+y2)∣gcd(2x2,2y2)=2.
If it equals 1, then both x2−y2 and x2+y2 are squares, which is impossible.
Therefore
gcd(x2−y2,x2+y2)=2
and both x,y are odd.
Thus
x2−y2=4u2\qand\qx2+y2=2v2\eqno(2)
for some integers u and v.
By Problem 2, there are integers a and b such that
u=ab,\qy=a2−b2,\qx=a2+b2.
Then
x2=2u2+v2\qand\qy2=v2−2u2.
Thus
(x−v)(x+v)=2u2 and (v−y)(v+y)=2u2.
There are integers a,b,c,d with
{x−v,x+v}={2a2,4b2} and {v−y,v+y}={2c2,4d2}.
Because
u=ab=cd, there are m,n,p,q∈Z with a=mn, b=pq, c=mp, d=nq.
Therefore v=|a2−2b2|=c2+2d2.
There are two possible cases.
(a) If a2−2b2=c2+2d2, then
m2n2=2p2q2+m2p2+2n2q2,\qm2(n2−p2)=2q2(n2+p2),
implying that |n|, |p|, |mq| form a smaller solution.
(b) If 2b2−a2=c2+2d2, then
2p2q2=m2n2+m2p2+2n2q2,\q2q2(p2−n2)=m2(n2+p2),
implying that |n|, |p|, |mq| form a smaller triple.
Because both cases lead to a contradiction, the original equation has no solutions.
\subsection{Sums of Two Squares and Z[i]}
The following is a well-known fact in Number Theory which also appeared as
a problem at the Moldavian IMO team selection tests in 2004.
{\bf Problem 5.}
{\it Let (a,b) and (c,d) be two different unordered pairs of nonnegative
integers such that
a2+b2=c2+d2=k.
Prove that k is composite.
}
{\bf Solution.}
Without loss of generality assume that a>c (for if a=c, then
b=d and the pairs would be the same).
We can rearrange the terms to obtain
(a−c)(a+c)=(d−b)(d+b).\eqno(3)
We immediately see that d>b.
Then a+c, a−c, d+b, d−b are positive integers and due to (3) and Lemma 1
we can find positive integers m,n,p,q with
gcd(n,p)=1 such that
a+c=mn,\qa−c=pq,\qd+b=mp,\qd−b=nq.
Then
a=\ds\fmn+pq2,\qb=\ds\fnq−mp2
and
4k=4(a2+b2)=(mn+pq)2+(nq−mp)2
=m2n2+p2q2+n2q2+m2p2=(m2+q2)(n2+p2).\eqno(4)
Suppose k is prime.
Then from (4), without loss of generality, k∣m2+q2.
Hence either
n2+p2=4 or n2+p2=2.
The former is impossible, because 4 cannot be represented as the sum of two positive
perfect squares.
The latter case yields n=p=1, which implies a=c, b=d that is again impossible.
Thus our assumption is wrong and k is composite.
Note that along the way we proved the following simple statement.
{\bf Lemma 2.}
{\it If a,b,c,d∈Z and a2+b2=c2+d2, then there are
m,n,p,q∈Z such that
2a=mn+pq,\q2b=mp−nq,\q2c=mp+nq,\q2s=mn−pq.
}
The Factoring Lemma also holds true in the Euclidean ring Z[i].
One application is the following lemma which leads to many interesting results.
{\bf Lemma 3.}
{\it If a,b,c,d are positive integers such that a2+b2=cd then there
are integers x,y,z,w,t such that
c=t(x2+y2),\qd=t(z2+w2),\qa=t(xz−yw),\qb=t(xw+yz).
}
{\bf Proof.}
Let t=gcd(a,b,c,d), a=ta1, b=tb1, c=tc1, d=td1.
Then
a21+b21=c1d1,
which can be rewritten as
(a1+b1i)(a1−b1i)=c1d1.\eqno(5)
By Lemma 1, there are m,n,p,q∈Z[i] such that
a1+b1i=mn,\qa1−b1i=pq,\qc1=np,\qd1=mq.\eqno(6)
Because np and mq are positive integers, it follows that
n=k\ovp and q=l\ovm
for some positive rational numbers k and l.
On the other hand,
|mn|=|pq| implies
|km\ovp|=|lp\ovm| and k=l.
Let u,v
be relatively prime positive integers such that k=\ds\fuv.
Then
a1+b1i=\ds\fuvm\ovp,\qa1−b1i=\ds\fuvp\ovm,\qc1=\ds\fuvp\ovp,\qd1=\ds\fuvm\ovm.
This means that u∣a,b,c,d and thus u=1.
In addition,
a1+b1i=\ds\fvun\ovq,\qa1−b1i=\ds\fvuq\ovn,\qc1=\ds\fvun\ovn,\qd1=\ds\fvuq\ovq,
implying v∣a,b,c,d and thus v=1.
Let n=x+yi and m=z+wi, where x,y,z,w∈Z.
Then (6) implies
a1=xz−yw,\qb1=xw+yz,\qc1=x2+y2,\qd1=z2+w2,
and thus
a=t(xz−yw),\qb=t(xw+yz),\qc=t(x2+y2),\qd=t(z2+w2).
{\bf Corollary 1.}
{\it If a,b,c are positive integers such that ab=c2+1, then a and
b can be represented as sums of two perfect squares.
}
{\bf Proof.}
By Lemma 2 there are integers x,y,z,t such that
t(x2+y2)=a,\qt(z2+w2)=b,\qt(xz−yw)=c,\qt(xw+yz)=1.
This implies t=1 and a=x2+y2, b=z2+w2.
{\bf Corollary 2.}
{\it Every prime p of the form 4k+1 can be represented as a sum
of two integer squares.
}
{\bf Proof.}
By Wilson's theorem,
−1≡(p−1)!=1⋅2…4k≡1⋅2…2k…(2k+1−p)(2k+2−p)…(4k−p)
≡(−1)2k(2k!)2≡(2k!)2(modp).\eqno(7)
By (7), we have
(2k!)2+1=ap,
for some integer a and by Corollary 1, p is a sum of two integer squares.
\subsection{Exercises}
The following problems may help the readers sharpen their skills in applying
techniques associated with the Factoring Lemma.
{\bf Problem 6.}
{\it Find all integer solutions to the equation x2+3y2=z2.
}
{\bf Problem 7.}
{\it Find all integer solutions to the equation x2+y2=5z2.
}
{\bf Problem 8.}
{\it Prove that if N=a2+2b2=c2+2d2 and {a,b}≠{c,d}, then
N is composite.
}
{\bf Problem 9.}
{\it Prove that no four perfect squares form a non-constant arithmetic
sequence.
}
{\bf Problem 10.}
(IMO Shortlist, 1998)
{\it Find all positive integers n for which there is an integer m with
2n−1∣m2+9.
}
\section*{Bibliography}
\bi
\item[{[1]}]
T. Andreescu, D.,
{\it An Introduction to Diophantine Equations},
GIL Publishing House, 2003.
\item[{[2]}]
T. Andreescu, D. Andrica, Z. Feng,
{\it 104 Number Theory Problems: From the training of USA IMO Team},
Birkhauser, 2006.
\item[{[3]}]
L. Panaitopol, A. Gica,
{\it O introducere in aritmetica si teoria numerelor},
Ed. Univ. Bucuresti, 2001.
\ei
\bigskip
\hfill
{\Large Iurie Boreico, USA}
\hfill
{\Large Roman Teleuca, Chisinau, Moldova}
%%%%%%%
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix