\section{On a Class of Three-Variable Inequalities}%20
\markboth{Articles}{On a Class of Three-Variable Inequalities}
\vspace{4.2cm}
\subsection{Theorem}
Let a,b,c be real numbers such that a+b+c=1.
By the AM-GM inequality,
ab+bc+ca≤\ds\f13,
therefore setting ab+bc+ca=\ds\f1−a23 (q≥0),
we will find the maximum and minimum values of abc in terms of q.
If q=0, then a=b=c=\ds\f13,
therefore abc=\ds\f127.
If q≠0, then
(a−b)2+(b−c)2+(c−a)2>0.
Consider the function
f(x)=(x−a)(x−b)(x−c)=x3−x2+\ds\f1−q23x−abc.
We have
f′(x)=3x2−2x+\ds\f1−q23
with zeros x1=\ds\f1+q3 and x2=\ds\f1−q3.
We can see that
f′(x)<0 for x2<x<x1 and f′(x)>0 for x<x2 or x>x1.
Furthermore, f(x) has three zeros: a,b,c.
Then
f(\ds\f1−q3)=\ds\f(1−q)2(1+2q)27−abc≥0
and
f(\ds\f1+q3)=\ds\f(1+q)2(1−2q)27−abc≤0.
Hence
\ds\f(1+q)2(1−2q)27≤abc≤\ds\f(1−q)2(1+2q)27
and we obtain the following theorem.
{\bf Theorem 1.}
{\it If a,b,c, are arbitrary real numbers such that a+b+c=1,
and if ab+bc+ca=\ds\f1−q23 (q≥0), then holds
\ds\f(1+q)2(1−2q)27≤abc≤\ds\f(1−q)2(1+2q)27.
}
Or, more generally,
{\bf Theorem 2.}
{\it Let a,b,c be real numbers such that a+b+c=p.
If ab+bc+ca=\ds\fp2−q23 (q≥0) and r=abc, then
\ds\f(p+q)2(p−2q)27≤r≤\ds\f(p−q)2(p+2q)27.
This is a powerful tool because the equality holds if and only if
(a−b)(b−c)(c−a)=0.
Here are some identities which we can use with this theorem
a2+b2+c2=\ds\fp2+2q23
a3+b3+c3=pq2+3r
ab(a+b)+bc(b+c)+ca(c+a)=\ds\fp(p2−q2)3−3r
(a+b)(b+c)(c+a)=\ovp(p2−q2)3−r
a2b2+b2c2+c2a2=\ds\f(p2−q2)29−2pr
ab(a2+b2)+bc(b2+c2)+ca(c2+a2)=\ds\f(p2+2q2)(p2−q2)9−pr
a4+b4+c4=\ds\f−p4+8p2q2+2q49+4pr.
}
{\bf Remark 1.}
There is also a geometric proof of this result.
By Viete's formulas we have
(x−a)(x−b)(x−c)=x2−px2+\ds\f13(p2−q2)x−r.
As we increase r we lower the graph of
y=x3−px2+\ds\f13(p2−q2)x−r.
The largest and smallest values of r for which this polynomial will have three real
roots will be at the points where it has double roots, with the maximum of r
corresponding to the case where the smaller root is the double root.
In this case we find the double root at (p∓q)/3 and the single root at (p±2q)/3
with the upper sign corresponding to the maximum of r and the lower sign the minimum.
{\bf Remark 2.}
This result is sharp in the following sense.
Suppose we are given real numbers p,q,r with q≥0 satisfying this inequality.
Then there exist real numbers a,b,c such that a+b+c=p,
ab+bc+ca=\ds\fp2−q23, and abc=r.
{\bf Remark 3.}
If a,b,c≥0 then we get the additional restrictions that r≥0
and p≥q.
This remark is used in the last application so it might be worth making
even if you ignore the others.
Alternately, one can state it with all three
inequalities strict.
For a monic cubic polynomial p(x)=(x−a)(x−b)(x−c)
the discriminant of the polynomial p is
D=(a−b)2(b−c)2(c−a)2.
This is a symmetric polynomial in the roots of p, therefore it can be written as a
polynomial in the coefficients of p.
In the special case above where
p(x)=x3−px2+\ds\f13(p2−q2)x−r
one can compute that
D=27(r−\ds\f(p+q)2(p−2q)3)(\ds\f(p−q)2(p+2q)3−r).
With this formula Theorem 2 and its converse combine to give the well known
fact that the discriminant is nonnegative if and only if p has only real roots.
\subsection{Applications}
{\bf Problem 1.}
{\it Let a,b,c be positive real numbers such that a+b+c=1.
Prove that
\ds\f1a+\ds\f1b+\ds\f1c+48(ab+bc+ca)≥25.
}
{\bf Solution.}
We can easily check that q∈[0,1], and by using Theorem 2,
LHS=\ds\f1−q23r+16(1−q2)≥\ds\f9(1+q)(1−q)(1+2q)+16(1−q2)=\ds\f2q2(4q−1)2(1−q)(1+2q)+25≥25.
The inequality is proved.
Equality holds if and only if a=b=c=\ds\f13
or a=\ds\f12, b=c=\ds\f14
and their permutations.
{\bf Problem 2.}
(Vietnam 2002).
{\it Let a,b,c be real numbers such that a2+b2+c2=9.
Prove that
2(a+b+c)−abc≤10.
}
{\bf Solution.}
The condition can be written as
p2+2q2=27.
Using our theorem, we have
LHS=2p−r≤2p−\ds\f(p+q)2(p−2q)27=\ds\fp(5q2+27)+2q327.
We need to prove that
p(5q2+27)≤270−2q3.
This follows from
(270−2q3)2≥p2(5q2+27)2,
or, equivalently,
27(q−3)2(2q4+12q3+49q2+146q+219)≥0.
The inequality is proved.
Equality holds if and only if a=b=2, c=−1 and
their permutations.
{\bf Problem 3.}
(Vo Quoc Ba Can).
{\it For all positive real numbers a,b,c,
\ds\fa+bc+\ds\fb+ca+\ds\fc+ab+11√\ds\fab+bc+caa2+b2+c2≥17.
}
{\bf Solution.}
Because the inequality is homogeneous, without loss of generality,
assume that p=1.
Then q∈[0,1] and the inequality can be written as
\ds\f1−q23r+11√\ds\f1−q21+2q2≥20.
By our theorem, it suffices to prove
11√\ds\f1−q21+2q2≥20−\ds\f9(1+q)(1−q)(1+2q)=\ds\f−40q2+11q+11(1−q)(1+2q).
If −40q2+11q+11≤0,
or
q≥\ds\f11+3√20980,
it is trivial.
If
q≤\ds\f11+3√20980<\ds\f23,
\ds\f121(1−q2)1+2q2−\ds\f(−40q2+11q+11)2(1−q)2(1+2q)2=\ds\f3q2(11−110q+255q2+748q3−1228q4)(1+2q2)(1−q)2(1+2q)2.
Note that the only positive real root of
11−110q+255q2+748q3−1228q4
is at 0.748037…>\ds\f11+3√20980
and therefore the numerator is positive for q≤\ds\f11+3√20980.
The inequality is proved.
Equality occurs if and only if a=b=c.
{\bf Problem 4.}
(Vietnam TST 1996).
{\it Prove that for any a,b,c∈R,
(a+b)4+(b+c)4+(c+a)4≥\ds\f47(a4+b4+c4).
}
{\bf Solution.}
If p=0 the inequality is trivial, so we will consider the case p≠0.
Without loss of generality, assume that p=1.
The inequality becomes
q4+4q2+10−108r≥0
and by our theorem
q4+4q2+10−108r≥q4+4q2+10−4(1−q)2(1+2q)=q2(q−4)2+6≥0.
The inequality is proved.
Equality holds only for a=b=c=0.
{\bf Problem 5.}
(Pham Huu Duc, MR1/2007).
{\it Prove that for any positive real numbers a,b,c,
√\ds\fb+ca+√\ds\fc+ab+√\ds\fa+bc≥√6⋅\ds\fa+b+c3√abc.
}
{\bf Solution.}
By H\"older's inequality,
(∑cyc√\ds\fb+ca)2(∑cyc\ds\f1a2(b+c))≥(∑cyc\ds\f1a)3.
It suffices to prove that
(∑cyc\ds\f1a)3≥\ds\f6(a+b+c)3√abc∑cyc\ds\f1a2(b+c).
Let x=\ds\f1a, y=\ds\f1b, z=\ds\f1c,
then the inequality becomes
(x+y+z)3≥63√xyz(xy+yz+zx)∑cyc\ds\fxy+z,
or
(x+y+z)3≥\ds\f63√xyz(xy+yz+zx)(x+y)(y+z)(z+x)((x+y+z)3−2(x+y+z)(xy+yz+zx)+3xyz).
By the AM-GM inequality,
(x+y)(y+z)(z+x)=(x+y+z)(xy+yz+zx)−xyz≥\ds\f89(x+y+z)(xy+yz+zx).
It remains to prove that
4(x+y+z)4≥273√xyz((x+y+z)3−2(x+y+z)(xy+yz+zx)+3xyz).
Setting p=x+y+z, xy+yz+zx=\ds\fp2−q23 (p≥q≥0),
the inequality becomes
4p4≥93√xyz(p3+2pq2+9xyz).
Applying our theorem, it suffices to prove that
4p4≥93√\ds\f(p−q)2(p+2q)27(p3+2pq2+\ds\f(p−q)2(p+2q)3)
4p4≥3√(p−q)2(p+2q)(3p3+6pq2+(p−q)2(p+2q)).
Setting u=3√\ds\fp−qp+2q≤1,
the inequality is equivalent to
4(2u3+1)4≥27u2(4u9+5u6+2u3+1),
or
f(u)=\ds\f(2u3+1)4u2(4u9+5u6+2u3+1)≥\ds\f274.
We have
f′(u)=\ds\f2(2u3+1)3(u3−1)(2u3−1)(2u6+2u3−1)u3(u3+1)2(4u6+u3+1)2
and
f′(u)=0\Lru=3√\ds\f√3−12,\ds\f13√2,1.
Now, we can easily verify that
f(u)≥min{f(3√\ds\f√3−12),f(1)}=\ds\f274,
which is true.
The inequality is proved.
Equality holds if and only if a=b=c.
{\bf Problem 6.}
(Darij Grinberg).
{\it If a,b,c≥0, then
a2+b2+c2+2abc+1≥2(ab+bc+ca).
}
{\bf Solution.}
Write the inequality as
6r+3+4q2−p2≥0.
If 2q≥p, it is trivial.
If p≥2q, using the theorem, it suffices to prove that
\ds\f2(p−2q)(p+q)29+3+4q2−p2≥0,
or
(p−3)2(2p+3)≥2q2(2q+3p−18).
If 2p≤9, we have 2q+3p≤4p≤18,
therefore the inequality is true.
If 2p≥9, we have
2q2(2q+3p−18)≤4q2(2p−9)≤p2(2p−9)
=(p−3)2(2p+3)−27<(p−3)2(2p+3).
The inequality is proved.
Equality holds if and only if a=b=c=1.
{\bf Problem 7.}
(Schur's inequality).
{\it For all nonnegative real numbers a,b,c,
a3+b3+c3+3abc≥ab(a+b)+bc(b+c)+ca(c+a).
}
{\bf Solution.}
Because the inequality is homogeneous, we can assume that
a+b+c=1.
Then q∈[0,1] and the inequality is equivalent to
27r+4q2−1≥0.
If q≥\ds\f12, it is trivial.
If q≤\ds\f12,
by the theorem we need to prove that
(1+q)2(1−2q)+4q2−1≥0,
or
q2(1−2q)≥0,
which is true.
Equality holds if and only if a=b=c or a=b, c=0 and their permutations.
{\bf Problem 8.}
(Pham Huu Duc).
{\it For all positive real numbers a,b,c,
\ds\f1a2+bc+\ds\f1b2+ca+\ds\f1c2+ab≤\ds\f(a+b+c)23(ab+bc+ca)(\ds\f1a2+b2+\ds\f1b2+c2+\ds\f1c2+a2).
}
{\bf Solution.}
Because the inequality is homogeneous, we may assume that p=1.
Then q∈[0,1],
and by the AM-GM and Schur's inequalities, we have
\ds\f(1−q2)29≥3r≥max{0,\ds\f1−4q29}.
After expanding, we can rewrite the given inequality as
f(r)=−486(9−q2)r3+27(q6+64q4−35q2+24)r2
+9(4q2−1)(11q4−4q2+2)r+q2(1−q2)3(2q4+8q2−1)≥0.
We have
f′(r)=9−162(9−q2)r2+6(q6+64q4−35q2+24)r+(4q2−1)(11q4−4q2+2)
f′′(r)=54(−54(9−q2)r+q6+64q4−35q2+24)
≥54(−2(1−q2)2(9−q2)+q6+64q4−35q2+24)=162(q6+14q4+q2+2)>0.
Hence f′(r) is an increasing function.
Now, if 1≤2q, then
f′(r)≥f′(0)=9(4q2−1)(11q4−4q2+2)≥0.
If 1≥2q, then
f′(r)≥f′(\ds\f1−4q227)=(1−4q2)(q2+2)(2q4+17q2+6)≥0.
In each case, f(r) is an increasing function.
If 1≤2q, then
f(r)≥f(0)=q2(1−q2)3(2q4+8q2−1)≥0,
and we are done.
If 1≥2q, by our theorem,
f(r)≥f(\ds\f(1+q)2(1−2q)27)
=\ds\f181q2(2−q)(q+1)2(6q3+4q2−7q+4)(5q2−2q+2)2≥0.
The proof is complete.
Equality holds if and only if a=b=c.
{\bf Problem 9.}
(Nguyen Anh Tuan).
{\it Let x,y,z be positive real numbers such that
xy+yz+zx+xyz=4.
Prove that
\ds\fx+y+zxy+yz+zx≤1+\ds\f148((x−y)2+(y−z)2+(z−x)2).
}
{\bf Solution.}
Since x,y,z>0 and xy+yz+zx+xyz=4, there are a,b,c>0 such that
x=\ds\f2ab+c, y=\ds\f2bc+a, z=\ds\f2ca+b.
The inequality becomes
P(a,b,c)=\ds\f(a+b+c)2\ds∑cyc(a2−b2)2(a+b)2(b+c)2(c+a)2−\ds\f6\ds∑cyca(a+b)(a+c)\ds∑cycab(a+b)+12≥0.
Because the inequality is homogeneous we can assume that p=1.
Then
q∈[0,1],
and after some computations, we can write the inequality as
f(r)=729r3+27(22q2−1)r2+27(6q4−4q2+1)r+(q2−1)(13q4−5q2+1)≤0.
We have
f′(r)=27(r(81r+44q2−2)+6q4−4q2+1).
By Schur's inequality,
81r+44q2−2≥3(1−4q2)+44q2−2=1+32q2>0.
Hence f′(r)≥0, and f(r) is an increasing function.
Then by our theorem,
f(r)≤f(\ds\f(1−q)2(1+2q)27)=\ds\f227q2(q−1)(q+2)2(4q4+14q3+15q2−7q+1)≤0.
The inequality is proved.
Equality holds if and only if x=y=z.
{\bf Problem 10.}
(Nguyen Anh Tuan).
{\it For all nonnegative real numbers a,b,c,
√(a2−ab+b2)(b2−bc+c2)+√(b2−bc+c2)(c2−ca+a2)
+√(c2−ca+a2)(a2−ab+b2)≥a2+b2+c2.
}
{\bf Solution.}
After squaring both sides, we can rewrite the inequality as
2√\ds∏cyc(a2−ab+b2)(∑cyc√a2−ab+b2)≥(∑cycab)(∑cyca2)−∑cyca2b2.
By the AM-GM inequality,
√a2−ab+b2≥\ds\f12(a+b), √b2−bc+c2≥\ds\f12(b+c), √c2−ca+a2≥\ds\f12(c+a).
It suffices to prove that
2√\ds∏cyc(a2−ab+b2)(∑cyca)≥(∑cycab)(∑cyca2)−∑cyca2b2.
Because this inequality is homogeneous, we can assume p=1.
Then q∈[0,1]
and the inequality is equivalent to
2√−72r2+3(1−10q2)r+q2(1−q2)2≥6r+q2(1−q2),
or
f(r)=324r2−12r(q4−11q2+1)−q2(4−q2)(1−q2)2≤0.
It is not difficult to verify that f(r) is a convex function, then by our theorem,
f(r)≤max{f(0),f(\ds\f(1−q)2(1+2q)27)}.
Furthermore,
f(0)=−q2(4−q2)(1−q2)2≤0
f(\ds\f(1−q)2(1+2q)27)=\ds\f19q2(q−1)3(q+2)(9q2+q+2)≤0.
Our proof is complete.
Equality holds if and only if a=b=c or a=t≥0,
b=c=0, and their permutations.
\bigskip
\hfill
{\Large Vo Quoc Ba Can, Vietnam}
%%%%%%%
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix