美国数学月刊征解题

(2017年10月AMM征解题)求证
\[\prod\limits_{j \ge 1} {{e^{ - 1/j}}\left( {1 + \frac{1}{j} + \frac{1}{{2{j^2}}}} \right)} = \frac{{{e^{\pi /2}} + {e^{ - \pi /2}}}}{{\pi {e^\gamma }}}.\]


 记

\[{x_n} = \prod\limits_{k = 1}^n {\left( {1 + \frac{1}{k} + \frac{1}{{2{k^2}}}} \right)} = \prod\limits_{k = 1}^n {\frac{{{{\left( {2k + 1} \right)}^2} + 1}}{{{{\left( {2k} \right)}^2}}}} ,\]

\begin{align*}
\frac{{\prod\limits_{k = 1}^{2n} {\left( {1 + \frac{1}{{{k^2}}}} \right)} }}{{{x_n}}} &= \frac{{\prod\limits_{k = 1}^{2n} {\frac{{{k^2} + 1}}{{{k^2}}}} }}{{\prod\limits_{k = 1}^n {\frac{{{{\left( {2k + 1} \right)}^2} + 1}}{{{{\left( {2k} \right)}^2}}}} }} = \frac{{\left( {{1^2} + 1} \right)\left( {{2^2} + 1} \right)\left( {{4^2} + 1} \right) \cdots \left[ {{{\left( {2n} \right)}^2} + 1} \right]}}{{{1^2}{3^2} \cdots {{\left( {2n - 1} \right)}^2}\left[ {{{\left( {2n + 1} \right)}^2} + 1} \right]}}\\
&= 2\prod\limits_{k = 1}^n {\left( {1 + \frac{1}{{4{k^2}}}} \right) \cdot } {\left[ {\frac{{\left( {2n} \right)!!}}{{\left( {2n - 1} \right)!!}}} \right]^2}\frac{1}{{4{n^2} + 4n + 2}},
\end{align*}
由Wallis公式可知
\[\mathop {\lim }\limits_{n \to \infty } {\left[ {\frac{{\left( {2n} \right)!!}}{{\left( {2n - 1} \right)!!}}} \right]^2}\frac{1}{{2n + 1}} = \frac{\pi }{2}.\]
由$\mathrm{sinh} x$的无穷乘积
\[\frac{{\sinh \left( {\pi x} \right)}}{{\pi x}} = \prod\limits_{k = 1}^\infty {\left( {1 + \frac{{{x^2}}}{{{k^2}}}} \right)} \]
可知
\[\prod\limits_{k = 1}^\infty {\left( {1 + \frac{1}{{{k^2}}}} \right)} = \frac{{{e^\pi } - {e^{ - \pi }}}}{{2\pi }},\quad \prod\limits_{k = 1}^\infty {\left( {1 + \frac{1}{{4{k^2}}}} \right)} = \frac{{{e^{\pi /2}} - {e^{ - \pi /2}}}}{\pi },\]
而调和数列
\[{H_n} = \sum\limits_{k = 1}^n {\frac{1}{k}} = \ln n + \gamma + o\left( 1 \right),\]

\[\mathop {\lim }\limits_{n \to \infty } n\prod\limits_{k = 1}^n {{e^{ - 1/k}}} = {e^{ - \gamma }}.\]
因此所求积分为
\[\frac{{\frac{{{e^\pi } - {e^{ - \pi }}}}{{2\pi }}}}{{{e^\gamma } \times \frac{\pi }{2} \times \frac{{{e^{\pi /2}} - {e^{ - \pi /2}}}}{\pi }}} = \frac{{{e^{\pi /2}} + {e^{ - \pi /2}}}}{{\pi {e^\gamma }}}.\]

事实上,我们还有
\begin{align*}
\cosh \left( {\pi x} \right) &= \prod\limits_{n = 1}^\infty {\left( {1 + \frac{{4{x^2}}}{{{{\left( {2n - 1} \right)}^2}}}} \right)} ,&\frac{{\sinh \left( {\pi x} \right)}}{{\pi x}} &= \prod\limits_{n = 1}^\infty {\left( {1 + \frac{{{x^2}}}{{{n^2}}}} \right)} ,\\
\cos \left( {\pi x} \right) &= \prod\limits_{n = 1}^\infty {\left( {1 - \frac{{4{x^2}}}{{{{\left( {2n - 1} \right)}^2}}}} \right)} ,&\frac{{\sin \left( {\pi x} \right)}}{{\pi x}} &= \prod\limits_{n = 1}^\infty {\left( {1 - \frac{{{x^2}}}{{{n^2}}}} \right)} ,
\end{align*}

另外
\begin{align*}
\sqrt 2 \sin \left( {\frac{{x + 1}}{4}\pi } \right) &= \prod\limits_{n = 0}^\infty {\left( {1 + \frac{{{{\left( { - 1} \right)}^n}x}}{{2n + 1}}} \right)} ,\\
\sqrt {x + 1} \sin \left( {\frac{{\sqrt {x + 1} }}{2}\pi } \right) &= \prod\limits_{n = 0}^\infty {\left( {1 - \frac{x}{{4{n^2} - 1}}} \right)} ,\\
- \sqrt {x - 1} \mathrm{csch}\left( {\frac{\pi }{2}} \right)\sin \left( {\frac{{\sqrt {x - 1} }}{2}\pi } \right) &= \prod\limits_{n = 0}^\infty {\left( {1 - \frac{x}{{4{n^2} + 1}}} \right)} ,\\
- \sqrt { - x - 1} \mathrm{csch}\left( {\frac{\pi }{{\sqrt a }}} \right)\sin \left( {\frac{{\sqrt { - x - 1} }}{{\sqrt a }}\pi } \right) &= \prod\limits_{n = 0}^\infty {\left( {1 + \frac{x}{{a{n^2} + 1}}} \right)} ,\\
\frac{{{e^{ - \gamma x}}}}{{\Gamma \left( {1 + x} \right)}} &= \prod\limits_{n = 1}^\infty {\frac{{1 + x/n}}{{{e^{x/n}}}}},
\end{align*}


对于求和,我们有
\begin{align*}
\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2} - {x^2}}}} &= \frac{1}{{2{x^2}}} - \frac{\pi }{{2x}}\cot \left( {\pi x} \right),&&\left| x \right| < \infty \\
\sum\limits_{n = 1}^\infty {\frac{1}{{{{\left( {{n^2} - {x^2}} \right)}^2}}}} &= - \frac{1}{{2{x^4}}} - \frac{{{\pi ^2}}}{{4{x^2}}}\mathrm{csc}^2\left( {\pi x} \right) + \frac{\pi }{{4{x^3}}}\cot \left( {\pi x} \right),&&\left| x \right| < \infty \\
\sum\limits_{n = 1}^\infty {\frac{1}{{{{\left( {2n - 1} \right)}^2} - {x^2}}}} &= \frac{\pi }{{4x}}\tan \left( {\frac{\pi }{2}x} \right),&& \left| x \right| < \infty \\
\sum\limits_{n = 1}^\infty {\frac{1}{{{{\left[ {{{\left( {2n - 1} \right)}^2} - {x^2}} \right]}^2}}}} &= \frac{{{\pi ^2}}}{{16{x^2}}}\sec \left( {\frac{\pi }{2}x} \right) - \frac{\pi }{{8{x^3}}}\tan \left( {\frac{\pi }{2}x} \right),&&\left| x \right| < \infty \\
\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2} + {x^2}}}} &= \frac{\pi }{{2x}}\coth \left( {\pi x} \right) - \frac{1}{{2{x^2}}}, &&\left| x \right| < \infty\\
\sum\limits_{n = 1}^\infty {\frac{1}{{{{\left( {2n - 1} \right)}^2} + {x^2}}}} &= \frac{\pi }{{4x}}\tanh \left( {\frac{\pi }{2}x} \right),&&\left| x \right| < \infty
\end{align*}
其中$\mathrm{sinh}x=\frac{e^x-e^{-x}}2,\mathrm{cosh}x=\frac{e^x+e^ {-x}}2,\mathrm{csch}x=\frac2{e^x-e^ {-x}},\mathrm{tanh}x=\frac{e^x-e^ {-x}}{e^x+e^ {-x}},\mathrm{coth}x=\frac{e^x+e^ {-x}}{e^x-e^ {-x}}$.

The Weierstrass factorization theorem. Sometimes called the Weierstrass product/factor theorem.

Let $f$ be an entire function, and let $\{a_n\}$ be the non-zero zeros of $ƒ$ repeated according to multiplicity; suppose also that $ƒ''$ has a zero at $z= 0$ of order $m\geq 0$ (a zero of order $m=0$ at $z=0$ means $f(0)\neq 0$.
Then there exists an entire function $g$ and a sequence of integers $\{p_n\}$ such that

\[f(z)=z^m e^{g(z)} \prod_{n=1}^\infty E_{p_n}\left(\frac{z}{a_n}\right).\]

====Examples of factorization====

\begin{align*}\sin \pi z &= \pi z \prod_{n\neq 0} \left(1-\frac{z}{n}\right)e^{z/n} = \pi z\prod_{n=1}^\infty \left(1-\left(\frac{z}{n}\right)^2\right)\\\cos \pi z &= \prod_{q \in \mathbb{Z}, \, q \; \text{odd} } \left(1-\frac{2z}{q}\right)e^{2z/q} = \prod_{n=0}^\infty \left( 1 - \left(\frac{z}{n+\tfrac{1}{2}} \right)^2 \right) \end{align*}

The cosine identity can be seen as special case of
\[\frac{1}{\Gamma(s-z)\Gamma(s+z)} = \frac{1}{\Gamma(s)^2}\prod_{n=0}^\infty \left( 1 - \left(\frac{z}{n+s} \right)^2 \right)\]
for $s=\tfrac{1}{2}$.

Mittag-Leffler's theorem.

== Pole expansions of meromorphic functions ==
Here are some examples of pole expansions of meromorphic functions:

\begin{align*}\frac{1}{\sin(z)}&= \sum_{n \in \mathbb{Z}} \frac{(-1)^n}{z-n\pi}= \frac{1}{z} + 2z\sum_{n=1}^\infty (-1)^n \frac{1}{z^2 - (n\,\pi)^2},\\\cot(z) &\equiv \frac{\cos (z)}{\sin (z)}= \sum_{n \in \mathbb{Z}} \frac{1}{z-n\pi}= \frac{1}{z} + 2z\sum_{k=1}^\infty \frac{1}{z^2 - (k\,\pi)^2},\\\frac{1}{\sin^2(z)} &= \sum_{n \in \mathbb{Z}} \frac{1}{(z-n\,\pi)^2},\\
\frac{1}{z \sin(z)}&= \frac{1}{z^2} + \sum_{n \neq 0} \frac{(-1)^n}{\pi n(z-\pi n)}= \frac{1}{z^2} + \sum_{n=1}^\infty \frac{(-1)^n}{n\,\pi} \frac{2z}{z^2 - (n\,\pi)^2}.\end{align*}

posted on 2017-10-29 20:44  Eufisky  阅读(923)  评论(0编辑  收藏  举报

导航