《特殊函数概论》Chapter 3习题解答
众所周知,王竹溪、郭敦仁所著的《特殊函数概论》是一本对初学特殊函数的同学非常友好的书,特别是对我这种英语不好的人来讲,不用一边翻字典一边看Whittaker&Waston了
但是据我所知,特殊函数概论应该是没有完整的习题解析(b站有大佬上传过第一章的解析)
笔者在去年写过第三章部分习题的解析,这段时间我补全了全部解答(花了好几节体育课)并将其码成文章发出来,希望能给学习特殊函数的您一点帮助~
为方便起见,创作过程中我将在不改变题意的前提下对原题进行一定的改写
现在让我们开始吧!
正文
1.证明在 \sum_{1\leq m\leq k}(a_m-b_m)=0 的条件下 \prod_{n=1}^\infty\left\{\frac{(n-a_1)\cdots(n-a_k)}{(n-b_1)\cdots(n-b_k)}\right\}=\prod_{1\leq m\leq k}\frac{\Gamma(1-b_m)}{\Gamma(1-a_m)}
依 \mathbf{Weierstrass} 公式有:
\frac1{\Gamma(1+x)}=\mathrm e^{\gamma x}\prod_{n=1}^\infty\left(\frac{n+x}{n}\right)\mathrm e^{-\frac xn}\\ {\Gamma(1+x)}=\mathrm e^{-\gamma x}\prod_{n= 1}^\infty\left(\frac{n}{n+x}\right)\mathrm e^{\frac xn}\\
所以
\begin{align} \prod_{1\leq m\leq k}\frac{\Gamma(1-b_m)}{\Gamma(1-a_m)}&=\prod_{n=1}^\infty\left\{\frac{(n-a_1)\cdots(n-a_k)}{(n-b_1)\cdots(n-b_k)}\right\}\exp\left\{\sum_{1\leq m\leq k}(a_m-b_m)\left(\frac1n+\gamma\right)\right\}\\ &=\boxed{\prod_{n=1}^\infty\left\{\frac{(n-a_1)\cdots(n-a_k)}{(n-b_1)\cdots(n-b_k)}\right\}} \end{align}\\
2.证明: \frac{(a+b)!}{a!b!}=\prod^\infty_{s=1}\frac{(s+a)(s+b)}{s(s+a+b)}
\begin{align} \frac{(a+b)!}{a!b!}&=\frac{\Gamma(a+b+1)}{\Gamma(a+1)\Gamma(b+1)}\\&=\mathrm e^{-\gamma(a+b)}\prod^\infty_{s=1}\frac{s}{s+a+b}\mathrm e^{\frac{a+b}{s}}\mathrm e^{\gamma a}\prod^\infty_{s=1}\frac{s+a}{s}\mathrm e^{-\frac as}\mathrm e^{\gamma b}\prod^\infty_{s=1}\frac{s+b}{s}\mathrm e^{-\frac bs}\\ &=\boxed{\prod^\infty_{s=1}\frac{(s+a)(s+b)}{s(s+a+b)}} \end{align}\\
3.证明:若 \omega:=\mathrm e^{2\pi\mathrm i/n},n\in\mathbb{Z}_{\geq 1} ,有 x^n\prod^\infty_{k=1}\left(1-\frac{x^n}{k^n}\right)=-\prod^{n-1}_{m=0}\frac1{\Gamma(-\omega^mx)}
依 \mathbf{Weierstrass} 公式有:
\frac1{\Gamma(-\omega^mx)}=-\omega^mx\mathrm e^{-\omega^mx}\prod^\infty_{k=1}\left(1-\frac {\omega^mx}{k}\right)\mathrm e^{{\omega^mx}/{k}}\\
所以
\begin{align} -\prod^{n-1}_{m=0}\frac1{\Gamma(-\omega^mx)}&=(-1)^{n+1}\omega^{n(n-1)/2}\exp\left\{-x\sum^{n-1}_{j=0}\omega^j\right\}\\&\times\prod^{n-1}_{m=0}\prod^\infty_{k=1}\left(1-\frac {\omega^mx}{k}\right)\mathrm e^{{\omega^mx}/{k}}\\ &=(-1)^{n+1}\mathrm e^{\pi (n-1)\mathrm i}\prod^\infty_{k=1}\prod^{n-1}_{m=0}\left(1-\frac {\omega^mx}{k}\right)\mathrm e^{{\omega^mx}/{k}}\\ &=\boxed{\prod^\infty_{k=1}\left(1-\frac{x^n}{k^n}\right)} \end{align}\\
4.证明 \Gamma(z)=\int^\infty_0t^{z-1}\left\{\mathrm e^{-t}+\sum^k_{j=0}(-1)^{k+1}\frac{t^k}{k!}\right\}\mathrm dt ,其中 k\in\mathbb{N}^+,-k-1<\Re(z)<-k
由 \mathbf{Gamma} 函数的定义 \Gamma(z)=\int^\infty_0t^{z-1}\mathrm e^{-t}\mathrm dt=\int^1_0t^{z-1}\mathrm e^{-t}\mathrm dt+\int^\infty_1t^{z-1}\mathrm e^{-t}\mathrm dt
\Re(z)<0 时,第一项积分不收敛,考虑把 \mathrm e^{-t} 泰勒级数的前 k 项放进去,使之变为
\int^1_0t^{z-1}\mathrm e^{-t}\mathrm dt=\int^1_0t^{z-1}\color{blue}{\left[\mathrm e^{-t}+\sum_{j=0}^k(-1)^{k+1}\frac{t^k}{k!}\right]}\mathrm dt+\color{red}{\sum^k_{j=0}\frac{(-1)^{j}}{j!(t+j)}}\\
蓝色部分 =\sum_{j\geq k+1}\frac{(-1)^j}{j!}t^{j+z-1}=\frac{(-1)^{k+1}}{(k+1)!}t^{k+z}+o(x^{k+z})
此时收敛域变为 \Re(z)>-k-1
红色部分 =\sum^k_{j=0}\frac{(-1)^{j+1}}{j!}\int^\infty_1t^{j+z-1}\mathrm dt=\int^\infty_1t^{z-1}\sum^k_{j=0}\frac{(-1)^{j+1}}{j!}t^j\mathrm dt
收敛域变为 \Re(z)<-k
所以 \Gamma(z)=\int^\infty_0t^{z-1}\left\{\mathrm e^{-t}+\sum^k_{j=0}(-1)^{k+1}\frac{t^k}{k!}\right\}\mathrm dt
6.证明 \mathbf{Binet} 公式的另一形式,对于 \Re(z)>0\log\Gamma(z)=\left(z-\frac12\right)\log z-z+\frac12\log(2\pi)+\int^\infty_0\left(\frac12-\frac1t+\frac1{\mathrm e^{t}-1}\right)\frac{\mathrm e^{-zt}}{t}\mathrm dt\\
\begin{align} &\quad\ \left(z-\frac12\right)\log z-z+\frac12\log(2\pi)+\int^\infty_0\left(\frac12-\frac1t+\frac1{\mathrm e^{t}-1}\right)\frac{\mathrm e^{-zt}}{t}\mathrm dt\\ &=\left(z-\frac12\right)\log z-z+\frac12\log(2\pi)+\int^\infty_0\left(1-\frac1{1-\mathrm e^{-t}}+\frac1{\mathrm e^t-1}\right)\frac{\mathrm e^{-zt}}{t}\mathrm dt\\ &-\int^\infty_0\left(\frac12-\frac1t+\frac1{\mathrm e^{-t}-1}\right)\frac{\mathrm e^{-zt}}{t}\mathrm dt\\ &=\left(z-\frac12\right)\log z-z+\frac12\log(2\pi)-\int^\infty_0\left(\frac12-\frac1t+\frac1{\mathrm e^{-t}-1}\right)\frac{\mathrm e^{-zt}}{t}\mathrm dt\\ &=\boxed{\log\Gamma(z)}\\ \end{align}
7. 证明:\int^\infty_0\left(\frac12-\frac1t+\frac1{\mathrm e^t-1}\right)\frac{\mathrm e^{-zt}}{t}\mathrm dt=1-\log(2\pi)
前一问的简单推论罢了
8.证明: \gamma=\int^\infty_0\left\{\frac1{1+t}-\mathrm e^{-t}\right\}\frac{\mathrm dt}{t}
\begin{align} &\quad\ \int^\infty_0\left\{\frac1{1+t}-\mathrm e^{-t}\right\}\frac{\mathrm dt}{t}\\ &=\lim_{r\to 0^{+}}\left\{\int^\infty_r\frac{\mathrm dt}{t(1+t)}-\int^\infty_r\frac{\mathrm e^{-t}}{t}\mathrm dt\right\}\\ &=\lim_{r\to 0^{+}}\left\{-\log r-[-\log r-\gamma+\mathcal{O}(r)]\right\}\\ &=\boxed{\gamma} \end{align}\\
9.由 \log\Gamma(z)=\int^\infty_0\left\{z-1-\frac{1-\mathrm e^{-(z-1)t}}{1-\mathrm e^{-t}}\right\}\frac{\mathrm e^{-t}}{t}\mathrm dt\quad,(\Re(z)>0) 证明在 0<\Re(z)<1 的条件下 2\log\Gamma(z)=\log\pi-\log\sin(\pi z)+\int^\infty_0\left\{\frac{\sinh(1/2-z)t}{\sinh(t/2)}-(1-2z)\mathrm e^{-t}\right\}\frac{\mathrm dt}{t}
\begin{align} 2\log\Gamma(z)&=\log\Gamma(z)+\log\pi-\log\sin(\pi z)-\log\Gamma(1-z)\\ &=\log\pi-\log\sin(\pi z)+\\&\int^\infty_0\left\{z-1-\frac{1-\mathrm e^{-(z-1)t}}{1-\mathrm e^{-t}}+z+\frac{1-\mathrm e^{zt}}{1-\mathrm e^{-t}}\right\}\frac{\mathrm e^{-t}}{t}\mathrm dt\\ &=\log\pi-\log\sin(\pi z)+\int^\infty_0\left\{2z-1+\frac{\mathrm e^{-(z-1)t}-\mathrm e^{zt}}{1-\mathrm e^{-t}}\right\}\frac{\mathrm e^{-t}}{t}\mathrm dt\\ &=\boxed{\log\pi-\log\sin(\pi z)+\int^\infty_0\left\{\frac{\sinh(1/2-z)t}{\sinh(t/2)}-(1-2z)\mathrm e^{-t}\right\}\frac{\mathrm dt}{t}} \end{align}
10&11.证明:
\log\Gamma(x)=\left(\frac12-x\right)(\gamma+\log 2)+(1-x)\log\pi-\frac12\log\sin(\pi x)+\frac1\pi\sum^\infty_{n=1}\frac{\log n}{n}\sin(2\pi nx)
将 \log \Gamma \left( x \right) 在 x\in \left( 0,1 \right) 上作傅里叶级数展开:
\log \Gamma \left( x \right) =\frac{a_0}{2}+\sum_{n=1}^\infty{a_n\cos \left( 2\pi nx \right) +b_n\sin \left( 2\pi nx \right)} \quad , x\in \left( 0,1 \right)
\begin{align} a_0&=2\int_0^1{\log \Gamma \left( x \right) \text{d}x}=\int_0^1\left[\log \Gamma \left( x \right) +\log \Gamma \left( 1-x \right) \right]\text{d}x\\&=\int_0^1{\log \frac{\pi}{\sin \left( \pi x \right)}\text{d}x} =\ln \pi -\int_0^1{\ln\sin \left( \pi x \right) \text{d}x} =\boxed{\ln \left( 2\pi \right) } \end{align}
\begin{align} a_n&=2\int_0^1{\log \Gamma \left( x \right) \cos \left( 2\pi nx \right) \text{d}x}=\int_0^1{\left[ \log \Gamma \left( x \right) +\log \Gamma \left( 1-x \right) \right] \cos \left( 2\pi nx \right) \text{d}x} \\ &=\int_0^1{\log\frac{2\pi}{2\sin \left( \pi x \right)}\cos \left( 2\pi nx \right) \text{d}x}=-\int_0^1{\log \left( 2\sin \pi x \right) \cos \left( 2\pi nx \right) \text{d}x} \\ &=\sum_{k=1}^{\infty}{\frac{1}{k}\int_0^1{\cos \left( 2\pi kx \right) \cos \left( 2\pi nx \right) \text{d}x}}=\frac{1}{2}\sum_{k=1}^{\infty}{\frac{1}{k}}[k=n]=\boxed{\frac{1}{2n}} \end{align}
\begin{align*} b_n&=2\int_0^1{\log \Gamma \left( x \right) \sin \left( 2\pi nx \right) \text{d}x}\\&=\frac{1}{\pi n}\int_0^1{\log \Gamma \left( x \right) \text{d}\left[ 1-\cos \left( 2\pi nx \right) \right]} \\ &=\frac{1}{\pi n}\int_0^1{\left[ \cos \left( 2\pi nx \right) -1 \right] \psi \left( x \right) \text{d}x}\\&=\frac{1}{\pi n}\int_0^1{\left[ \cos \left( 2\pi nx \right) -1 \right] \cdot \left( -\gamma +\int_0^1{\frac{t^{x-1}-1}{t-1}\text{d}t} \right)\text{d}x} \\ &=\frac{\gamma}{\pi n}+\frac{1}{\pi n}\int_0^1{\frac{1}{t-1}\left\{\int_0^1{\left[ \cos \left( 2\pi nx \right) -1 \right] \cdot \left(t^{x-1}-1 \right) \text{d}x} \right\} \text{d}t} \\ &=\frac{\gamma}{\pi n}+\frac{1}{\pi n}\int_0^1{\left[ \frac{1}{t-1}+\frac{1}{t}\cdot \frac{\log t}{ \log (t)^2+\left( 2\pi n \right) ^2}-\frac{1}{t\log t} \right] \text{d}t} \\ &=\boxed{\frac{\gamma +\log \left( 2\pi n \right)}{\pi n}} \end{align*}
所以
\begin{align} \log \Gamma \left( x \right) &=\frac{a_0}{2}+\sum_{n=1}^\infty{a_n\cos \left( 2\pi nx \right) +b_n\sin \left( 2\pi nx \right)}\\ &=\frac12\log(2\pi)+\sum^\infty_{n=1}\frac{\cos (2\pi nx)}{2n}+\sum^\infty_{n=1}\frac{\gamma+\log(2\pi n)}{\pi n}\sin(2\pi nx)\\ &=\frac12\log(2\pi n)-\frac12\log(2\sin\pi x)+\sum^\infty_{n=1}\frac{\gamma+\log (2\pi)}{\pi n}\sin(2\pi nx)\\ &+\frac1\pi \sum^\infty_{n=1}\frac{\log n}{n}\sin(2\pi nx)\\ &=\boxed{\left(\frac12-x\right)(\gamma+\log 2)+(1-x)\log\pi-\frac12\log\sin(\pi x)+\frac1\pi\sum^\infty_{n=1}\frac{\log n}{n}\sin(2\pi nx)} \end{align}
12.在 \lambda>0,x>0,-\pi/2<\alpha<\pi/2 的条件下,证明:
\int^\infty_0t^{x-1}\mathrm e^{-\lambda\cos \alpha t}\begin{matrix}\cos \\\sin \end{matrix}(\lambda t\sin \alpha)=\lambda^{-x}\Gamma(x)\begin{matrix}\cos \\\sin \end{matrix}(\alpha x)
\begin{align} &\quad\ \int^\infty_0t^{x-1}\mathrm e^{-\lambda\cos \alpha t}\mathrm e^{\mathrm i\lambda t\sin\alpha}\mathrm dt\\ &=\int^\infty_0t^{x-1}\mathrm e^{(\mathrm i \sin \alpha-\cos \alpha)\lambda t}\mathrm dt\\ &\xlongequal{\lambda t\to t}\frac1{\lambda^x}\int^\infty_0t^{x-1}\exp\left(-\mathrm e^{-\mathrm i \alpha }t\right)\mathrm dt\\ &\xlongequal{\mathrm e^{-\mathrm i \alpha }t\to t}\frac{\mathrm e^{\mathrm i\alpha x}}{\lambda ^x}\int^{\infty\mathrm e^{-\mathrm i\alpha}}_0t^{x-1}\mathrm e^{-t}\mathrm dt\\ &=\boxed{\frac{\mathrm e^{\mathrm i\alpha}}{\lambda^x}\Gamma(x)} \end{align}\\
13.若 b>0 ,证明:
\int^\infty_0x^{-z}\sin(bx)\mathrm dx=\frac\pi2\frac{b^{z-1}}{\Gamma(z)\sin(\pi z/2)}\quad,(0<z<2)\\ \int^\infty_0x^{-z}\cos(bx)\mathrm dx=\frac\pi2\frac{b^{z-1}}{\Gamma(z)\cos(\pi z/2)}\quad,(0<z<1)
利用上题结论变形即得结论
14.证明: \mathrm B(np,nq)=n^{-nq}\prod_{i=0}^{n-1}\mathrm B\left(p+\frac{i}{n},q\right)\left[\prod^{n-1}_{i=1}\mathrm B(iq,q)\right]^{-1}
\begin{align} &\quad\ n^{-nq}\prod_{i=0}^{n-1}\mathrm B\left(p+\frac{i}{n},q\right)\left[\prod^{n-1}_{i=1}\mathrm B(iq,q)\right]^{-1}\\ &={n^{-nq}\Gamma(q)^n}\prod^{n-1}_{i=0}\frac{\Gamma\left(p+\frac in\right)}{\Gamma(p+q+\frac in)}\left[\prod^{n-1}_{i=1}\frac{\Gamma(iq)\Gamma(q)}{\Gamma((i+1)q)}\right]^{-1}\\ &={n^{-nq}}\Gamma(q)^n\frac{(2\pi)^{\frac12(n-1)}{n^{\frac12-np}}\Gamma(np)}{(2\pi)^{\frac12(n-1)}n^{\frac12-n(p+q)}\Gamma(n(p+q))}\frac{\Gamma(nq)}{\Gamma(q)^n}\\ &=\frac{\Gamma(nq)\Gamma(np)}{\Gamma(n(p+q))}=\boxed{\mathrm B(np,nq)} \end{align}\\
15.证明:
\int^1_0\int^1_0f(xy)(1-x)^{\mu-1}y^\mu(1-y)^{\nu-1}\mathrm dx\mathrm dy\\=\frac{\Gamma(\mu)\Gamma(\nu)}{\Gamma(\mu+\nu)}\int^1_0f(z)(1-z)^{\mu+\nu-1}\mathrm dz
不妨设 f 任意阶可微,故 f 可展开成如下的幂级数
f(x)=\sum^\infty_{n=0}a_nx^n\\
所以
\begin{align} &\quad\ \int^1_0\int^1_0f(xy)(1-x)^{\mu-1}y^\mu(1-y)^{\nu-1}\mathrm dx\mathrm dy\\ &=\int^1_0\int^1_0\sum^\infty_{n=0}\frac{a_n}{n!}x^ny^n(1-x)^{\mu-1}y^\mu(1-y)^{\nu-1}\mathrm dx\mathrm dy\\ &=\sum^\infty_{n=0}\frac{a_n}{n!}\int^1_0x^n(1-x)^{\mu-1}\mathrm dx\int^1_0y^{n+\mu}(1-y)^{\nu-1}\mathrm dy\\ &=\sum^\infty_{n=0}\frac{a_n}{n!}\mathrm B(n+1,\mu)\mathrm B(n+\mu+1,\nu)\\ &=\sum^\infty_{n=0}\frac{a_n}{n!}\frac{\Gamma(n+1)\Gamma(\mu)\Gamma(\nu)\Gamma(n+\mu+1)}{\Gamma(n+\mu+1)\Gamma(n+\mu+\nu+1)}\\ &=\frac{\Gamma(\mu)\Gamma(\nu)}{\Gamma(\mu+\nu)}\sum^\infty_{n=0}\frac{a_n}{n!}\mathrm B(n+1,\nu+\mu)\\&=\frac{\Gamma(\mu)\Gamma(\nu)}{\Gamma(\mu+\nu)}\sum^\infty_{n=0}\frac{a_n}{n!}\int^1_0z^n(1-z)^{\mu+\nu-1}\mathrm dz\\ &=\frac{\Gamma(\mu)\Gamma(\nu)}{\Gamma(\mu+\nu)}\int^1_0(1-z)^{\mu+\nu+1}\sum^\infty_{n=0}\frac{a_n}{n !}z^n\mathrm dz\\ &=\boxed{\frac{\Gamma(\mu)\Gamma(\nu)}{\Gamma(\mu+\nu)}\int^1_0(1-z)^{\mu+\nu+1}f(z)\mathrm dz} \end{align}\\
16.若 p+q>1,q<1 ,证明 \int^{\pi/2}_0\cos^{p+q-2}\theta\cos((p-q)\theta)\mathrm d\theta=\frac{\pi}{(p+q-1)2^{p+q-1}\mathrm B(p,q)}
此类积分本人在文章里给出了推广形式,只需代入数据运算即可
17.证明
(i)当 \Re(s)>0 时, \eta(s)=(1-2^{1-s})\zeta(s)=\frac1{\Gamma(s)}\int^\infty_0\frac{x^{s-1}}{\mathrm e^x+1}\mathrm dx
(ii)当 \Re(s)>1 时, (2^s-1)\zeta(s)=\zeta(s,1/2)=\frac{2^{s-1}}{\Gamma(s)}\int^\infty_0\frac{x^{s-1}}{\sinh x}\mathrm dx
\begin{align} \frac1{\Gamma(s)}\int^\infty_0\frac{x^{s-1}}{\mathrm e^x+1}\mathrm dx&=\frac1{\Gamma(s)}\int^\infty_0x^{s-1}\sum^\infty_{n=1}(-1)^{n+1}\mathrm e^{-nx}\mathrm dx\\ &=\frac1{\Gamma(s)}\sum^\infty_{n=1}(-1)^{n+1}\int^\infty_0x^{s-1}\mathrm e^{-nx}\mathrm dx\\ &\xlongequal{nx\to x}\frac1{\Gamma(s)}\sum^\infty_{n=1}\frac{(-1)^{n+1}}{n^s}\int^\infty_0x^{s-1}\mathrm e^{-x}\mathrm dx\\ &=\sum^\infty_{n=1}\frac{(-1)^{n+1}}{n^s}=\sum^\infty_{n=1}\frac1{n^s}-2\sum^\infty_{n=1}\frac1{(2n)^s}\\ &=\boxed{(1-2^{1-s})\zeta(s)=\eta(s)} \end{align}\\
\begin{align} \frac{2^{s-1}}{\Gamma(s)}\int^\infty_0\frac{x^{s-1}}{\sinh x}\mathrm dx&=\frac{2^{s}}{\Gamma(s)}\int^\infty_0\frac{\mathrm e^{-x}x^{s-1}}{1-\mathrm e^{-2x}}\mathrm dx\\ &=\frac{2^s}{\Gamma(s)}\int^\infty_0x^{s-1}\sum^\infty_{n=0}\mathrm e^{-(2n+1)x}\mathrm dx\\ &=\frac{2^s}{\Gamma(s)}\sum^\infty_{n=0}\int^\infty_0x^{s-1}\mathrm e^{-(2n+1)x}\mathrm dx\\ &\xlongequal{(2n+1)}\frac1{\Gamma(s)}\sum^\infty_{n=0}\frac{1}{(n+1/2)^s}\int^\infty_0x^{s-1}\mathrm e^{-x}\mathrm dx\\ &=\boxed{\zeta(s,1/2)=(2^{s}-1)\zeta(s)} \end{align}\\
18.证明: \zeta(s)=\frac{\Gamma(1-s)}{2^{s-1}-1}\frac1{2\pi\mathrm i}\int^{(0+)}_{\infty}\frac{(-z)^{s-1}}{\mathrm e^{z}+1}\mathrm dz
利用Qn21的结论化简即可,不多赘述
19.证明:
\log\Gamma(z)=\left(z-\frac12\right)\log z-z+\frac12\log(2\pi)\\+\frac12\sum^\infty_{s=1}\frac{s}{(s+1)(s+2)}\zeta(s+1,z+1)
\begin{align} &\quad\ \left(z-\frac12\right)\log z-z+\frac12\log(2\pi)+\frac12\sum^\infty_{s=1}\frac{s}{(s+1)(s+2)}\zeta(s+1,z+1)\\ &=\left(z-\frac12\right)\log z-z+\frac12\log(2\pi)+\frac12\sum^\infty_{s=1}\frac{s}{\Gamma(s+3)}\int^\infty_0\frac{t^{s}\mathrm e^{-zt}}{\mathrm e^{t}-1}\mathrm dt\\ &=\left(z-\frac12\right)\log z-z+\frac12\log(2\pi)+\frac12\int^\infty_0\frac{\mathrm e^{-zt}}{\mathrm e^{t}-1}\sum^\infty_{s=1}\frac{st^{s}}{\Gamma(s+3)}\mathrm dt\\ &=\left(z-\frac12\right)\log z-z+\frac12\log(2\pi)+\frac12\int^\infty_0\frac{\mathrm e^{-zt}[\mathrm e^{t}(t-2)+t+2]}{t^2(\mathrm e^{t}-1)}\mathrm dt\\ &=\left(z-\frac12\right)\log z-z+\frac12\log(2\pi)+\int^\infty_0\left(\frac12-\frac{1}{t}+\frac{1}{\mathrm e^{t}-1}\right)\frac{\mathrm e^{-zt}}{t}\mathrm dt\\ &=\boxed{\log\Gamma(z)} \end{align}\\
20.证明: \Phi(z,s,a)=\frac1{\Gamma(s)}\int^\infty_0\frac{t^{s-1}\mathrm e^{-at}}{1-z\mathrm e^{-t}}\mathrm dt
\begin{align} \frac1{\Gamma(s)}\int^\infty_0\frac{t^{s-1}\mathrm e^{-at}}{1-z\mathrm e^{-t}}\mathrm dt&=\frac1{\Gamma(s)}\int^\infty_0t^{s-1} \mathrm e^{-at}\sum^\infty_{n=0}z^n\mathrm e^{-nt}\mathrm dt\\ &=\frac1{\Gamma(s)}\sum^\infty_{n=0}z^n\int^\infty_0t^{s-1}\mathrm e^{-(a+n)t}\mathrm dt\\ &\xlongequal{(a+n)t\to t}\frac1{\Gamma(s)}\sum^\infty_{n=0}\frac{z^n}{(a+n)^s}\int^\infty_0t^{s-1}\mathrm e^{-t}\mathrm dt\\ &=\boxed{\Phi(z,s,a)} \end{align}\\
21.证明: \Phi(z,s,a)=-\frac{\Gamma(1-s)}{2\pi\mathrm i}\int^{(0{+})}_{\infty}\frac{(-t)^{s-1}\mathrm e^{-at}}{1-z\mathrm e^{-t}}\mathrm dt\quad,|\arg(-t)|<\pi
\begin{align}&\quad\ -\frac{\Gamma(1-s)}{2\pi\mathrm i}\int^{(0{+})}_{\infty}\frac{(-t)^{s-1}\mathrm e^{-at}}{1-z\mathrm e^{-t}}\mathrm dt\\&=-\frac{\Gamma(1-s)}{2\pi\mathrm i}\int^{(0{+})}_{\infty}{(-t)^{s-1}\mathrm e^{-at}}\sum^\infty_{n=0}z^n\mathrm e^{-nt}\mathrm dt\\ &=-\frac{\Gamma(1-s)}{2\pi\mathrm i}\sum^\infty_{n=0}z^n\int^{(0+)}_{\infty}(-t)^{s-1}\mathrm e^{-(a+n)t}\mathrm dt\\ &\xlongequal{t\to -t}-\frac{\Gamma(1-s)}{2\pi\mathrm i}\sum^\infty_{n=0}z^n\int^{(0+)}_{-\infty}t^{s-1}\mathrm e^{(a+n)t}\mathrm dt\\ &\xlongequal{(a+n)t\to t}-\frac{\Gamma(1-s)}{2\pi\mathrm i}\sum^\infty_{n=0}\frac{z^n}{(n+a)^s}\int^{(0+)}_{-\infty}t^{s-1}\mathrm e^{t}\mathrm dt\\ &=\sum^\infty_{n=0}\frac{z^n}{(n+a)^s}=\boxed{\Phi(z,s,a)} \end{align}\\
22.证明:
\Phi(z,s,a)=z^{-a}\Gamma(1-s)\sum_{n\in\mathbb{Z}}(-\log z+2n\pi\mathrm i)^{s-1}\mathrm e^{2n\pi a\mathrm i}\\0<a\leq 1,\Re(s)<0,|\arg(-\log z+2n\pi\mathrm i)|<\pi
\Phi(z,s,a)=\Gamma(1-s)z^{-a}\log^{s-1}(1/z)+z^{-a}\sum^\infty_{r=0}\zeta(s-r,a)\frac{\log(z)^r}{r!}\\|\log z|<2\pi,s≠1,2,3,\cdots;a≠0,-1,-2,\cdots
考虑积分围道 C 以原点为圆心的圆,半径为 (2N+1)\pi,N\in\mathbb{Z}_{>0}
考虑被积函数 f(t):=\frac{(-t)^{s-1}\mathrm e^{-at}}{1-z\mathrm e^{-t}} ,除了一阶极点 \log z+2n\pi\mathrm i(n=-N,\cdots,N)
留数 \mathrm{Res}[f;\log z+2n\pi\mathrm i]=z^{-a}(-\log z-2n\pi\mathrm i)^{s-1}
\frac1{2\pi\mathrm i}\int_C\frac{(-t)^{s-1}\mathrm e^{-at}}{1-z\mathrm e^{-t}}\mathrm dt-\frac1{2\pi\mathrm i}\int^{(0+)}_{(2N+1)\mathrm \pi}\frac{(-t)^{s-1}\mathrm e^{-at}}{1-z\mathrm e^{-t}}\mathrm dt=\\ \sum^N_{n=-N}\mathrm{Res}\left[\frac{(-t)^{s-1}\mathrm e^{-at}}{1-z\mathrm e^{-t}},\log z+2n\pi\mathrm i\right] =z^{-a}\sum^N_{n=-N}(-\log z-2n\pi\mathrm i)^{s-1}\mathrm e^{-2an\pi\mathrm i}
而
\lim_{N\to\infty}\frac1{2\pi\mathrm i}\int_C\frac{(-t)^{s-1}\mathrm e^{-at}}{1-z\mathrm e^{-t}}\mathrm dt=0\\\lim_{N\to \infty}-\frac1{2\pi\mathrm i}\int^{(0+)}_{(2N+1)\mathrm \pi}\frac{(-t)^{s-1}\mathrm e^{-at}}{1-z\mathrm e^{-t}}\mathrm dt=\frac{\Phi(z,s,a)}{\Gamma(1-s)}\\
所以
\begin{align} \Phi(z,s,a)&=z^{-a}\Gamma(1-s)\sum_{n\in\mathbb{Z}}(-\log z-2n\pi\mathrm i)^{s-1}\mathrm e^{-2n\pi a\mathrm i}\\&=\boxed{z^{-a}\Gamma(1-s)\sum_{n\in\mathbb{Z}}(-\log z+2n\pi\mathrm i)^{s-1}\mathrm e^{2n\pi a\mathrm i}} \end{align}\\
接下来看第二个
由常用梅林变换公式知: \mathcal M\{x^{-s}\mathrm e^{-\beta x}\}(\nu)=\beta^{s-\nu}\Gamma(\nu-s),\quad\Re(\nu)>\Re(s),\Re(\beta)>0
作梅林逆变换得 \frac{\mathrm e^{-\beta x}}{x^s}=\beta^s\frac1{2\pi\mathrm i}\int^{\sigma+\mathrm i\infty}_{\sigma-\mathrm i\infty}(\beta x)^{-\nu}\Gamma(\nu-s)\mathrm d\nu ,所以
\begin{align} \sum^\infty_{n=1}\frac{\exp\{-z(n+a)\}}{(n+a)^s}&=z^s\sum^\infty_{n=1}\frac1{2\pi\mathrm i}\int^{\sigma+\mathrm i\infty}_{\sigma-\mathrm i\infty}\Gamma(\nu-s)\frac{\mathrm d\nu}{z^{\nu}(n+a)^\nu}\\ &=z^s\frac1{2\pi\mathrm i}\int^{\sigma+\mathrm i\infty}_{\sigma-\mathrm i\infty}\frac{\Gamma(\nu-s)}{z^\nu}\sum^\infty_{n=1}\frac{1}{(n+a)^\nu}\mathrm d\nu\\ &=z^s\frac1{2\pi\mathrm i}\int^{\sigma+\mathrm i\infty}_{\sigma-\mathrm i\infty}\frac{\Gamma(\nu-s)}{z^\nu}\zeta(\nu,a)\mathrm d\nu\\ &=z^s\sum^\infty_{r=0}\mathrm{Res}\left[\frac{\Gamma(\nu-s)}{z^\nu}\zeta(\nu,a),s-r(r=0,1,\cdots)\right]\\ &+z^s\mathrm{Res}\left[\frac{\Gamma(\nu-s)}{z^\nu}\zeta(\nu,a),1\right]\\ &=\sum^\infty_{r=0}(-1)^r\frac{\zeta(s-r,a)}{r!}z^r+\Gamma(1-s)z^{s-1} \end{align}
两个留数,前者是平凡的,只需利用伽马函数在负整数处的留数即可
后者利用
\mathrm{Res}[\zeta(\nu,a),1]=\lim_{\nu\to 1}\zeta(\nu,a)(s-1)=\lim_{\nu\to 1}\left\{1+\sum^\infty_{n=0}\frac{(-1)^n\gamma_n(a)(s-1)^{n+1}}{n!}\right\}=1
即可
变形得到: \Phi(z,s,a)=\Gamma(1-s)z^{-a}\log^{s-1}(1/z)+z^{-a}\sum^\infty_{r=0}\zeta(s-r,a)\frac{\log(z)^r}{r!}
23.Lerch的变换公式
\Phi(z,s,a)=\mathrm iz^{-a}(2\pi )^{s-1}\Gamma(1-s)\left\{\mathrm e^{-\mathrm i\pi s/2 }\Phi\left(\mathrm e^{-2\pi a\mathrm i},1-s,\frac{\log z}{2\pi\mathrm i}\right)\\-\mathrm e^{\mathrm i\pi (s/2+2a) }\Phi\left(\mathrm e^{2\pi a\mathrm i},1-s,1-\frac{\log z}{2\pi\mathrm i}\right)\right\}
\begin{align} &\quad\ \mathrm e^{-\mathrm i\pi s/2 }\Phi\left(\mathrm e^{-2\pi a\mathrm i},1-s,\frac{\log z}{2\pi\mathrm i}\right)\\&=\Gamma(s)\mathrm e^{-\mathrm i\pi s/2}z^a\sum_{n\in\mathbb{Z}}(2\pi a\mathrm i+2n\pi \mathrm i)^{-s}z^n=\boxed{\Gamma(s)\mathrm e^{-\mathrm i\pi s}z^a(2\pi)^{-s}\sum_{n\in\mathbb{Z}}\frac{z^n}{(n+a)^s}} \end{align}
\begin{align} &\quad\ \mathrm e^{\mathrm i\pi (s/2+2a) }\Phi\left(\mathrm e^{2\pi a\mathrm i},1-s,1-\frac{\log z}{2\pi\mathrm i}\right)\\&=\Gamma(s)\mathrm e^{\mathrm i\pi s/2}z^a\sum_{n\in\mathbb Z}(-2\pi a\mathrm i +2n\pi\mathrm i)^{-s}z^n=\boxed{\Gamma(s)z^a(2\pi)^{-s}\sum_{n\in\mathbb{Z}}\frac{z^n}{(n-a)^s}} \end{align}
代回去一顿爆算(
\begin{align} &\quad\ \mathrm iz^{-a}(2\pi )^{s-1}\Gamma(1-s)\left\{\mathrm e^{-\mathrm i\pi s/2 }\Phi\left(\mathrm e^{-2\pi a\mathrm i},1-s,\frac{\log z}{2\pi\mathrm i}\right)\\-\mathrm e^{\mathrm i\pi (s/2+2a) }\Phi\left(\mathrm e^{2\pi a\mathrm i},1-s,1-\frac{\log z}{2\pi\mathrm i}\right)\right\}=\boxed{\Phi(z,s,a)} \end{align}
24.证明: \frac1{\zeta(s)}=\sum^\infty_{n=1}\frac{\mu(n)}{n^s}
\begin{align} \sum^\infty_{n=1}\frac{\mu(n)}{n^s}&=\prod_p\frac1{1-\mu(p)p^{-s}}=\prod_p\sum_{n=0}^\infty\frac{\mu(p)^n}{p^{ns}}=\prod_p\sum^\infty_{n=0}\frac{\mu(p^n)}{p^{ns}}\\ &=\prod_p\left(1-\frac{1}{p^s}\right)=\boxed{\frac1{\zeta(s)}} \end{align}\\
25.证明:若 \Re(s)>1 有 \zeta(s)^2=\sum_{n=1}^\infty\frac{\tau(n)}{n^s}
\begin{align} \sum^\infty_{n=1}\frac{\tau(n)}{n^s}&=\prod_p\frac1{1-\tau(p)p^{-s}}=\prod_p\sum_{n=1}^\infty\frac{\tau(p)^n}{p^{ns}}=\prod_p\sum^\infty_{n=1}\frac{\tau(p^n)}{p^{ns}}\\ &=\prod_p\frac{1}{(1-p^{-s})^2}=\boxed{\zeta(s)^2} \end{align}\\
26.证明:若 \Re(s)>1 有 \log\zeta(s)=\sum_p\sum^\infty_{m=1}\frac1{mp^{ms}},-\frac{\zeta'}{\zeta}(s)=\sum^\infty_{n=1}\frac{\Lambda(n)}{n^s}
首先有 \zeta(s)=\prod_{p}\left(1-\frac{1}{p^s}\right)^{-1} ,取对数容易求得
\begin{align} \log\zeta(s)&=-\sum_p\log(1-p^{-s})=\boxed{\sum_p\sum_{m=1}^\infty\frac1{mp^{ms}}} \end{align}\\
接下来搞第二个
\begin{align} \sum^\infty_{n=1}\frac{\Lambda(n)}{n^s}&=\sum_p\sum_{n=1}^\infty\frac{\log p }{p^{ns}}=\sum_p\frac{p^{-s}\log p}{1-p^{-s}}=-D_s\sum_p\log(1-p^{-s})\\ &=-D_s\log\zeta(s)=\boxed{-\frac{\zeta'}{\zeta}(s)} \end{align}\\
对解析的一些批注
前三题没啥好说的,利用威尔斯特拉斯公式变形即可
第四题是个解析延拓的题,难度也不算大,属于比较典型的解析延拓题了,有个巧妙的方法可以去看
的文章
第五题没太明白他想问啥,暂时跳过
第六题基于原有结论变形即可,第七题属于第六题的推论
第八题我用渐近分析的方法做的,当然没必要,其他方法留给读者思考
九、十、十一三题都是基于Kummer's Fourier series出的,只要你敢算你就能做出来
第十二题用到了伽马函数的一个积分式 \Gamma(z)=\int^{\infty\mathrm e^{\mathrm i\alpha}}_0t^{z-1}\mathrm e^{-t}\mathrm dt 证明留给读者思考(提示:构造扇形围道)
第十三题是第十二题的推论,其他解法见[1]
第十四题利用倍元公式即可,会算就行
第十五题我怀疑我的解法不太严谨,这里不作说明
第十六题我挂出了文章里的推广结论,并没有参考王竹溪的提示,十分暴力。
两位大佬都给出了巧妙的复方法,可以去看看两人的文章
第十七题、第二十题都是简单题,我在以前的文章里也给出了很多例子[2]
第十八、二十一题利用Hankel积分即可
第十九题计算罢了
二十二题略有难度,前者涉及到很多复变函数的理论,后者我给出了一个利用梅林变换的很巧妙的解法
第二十三题爆算[3]
第二十四题往后都是披着解析数论外皮的简单题,只需要利用狄利克雷级数的性质[4] L(s,\chi)=\sum^\infty_{n=1}\chi(n)n^{-s}=\prod_p(1-\chi(p)p^{-s})^{-1} 和积性函数的性质即可
“王治淇,著名文字学家,其父、祖父都是清末秀才,自幼熟读四书五经。代表作《新部首大字典》《特殊函数概论》”(乐)
参考
- ^https://www.zhihu.com/question/528516964/answer/2445478028
- ^https://zhuanlan.zhihu.com/p/388378336
- ^其实这道题我也不知道算没算出来 乐
- ^潘承洞、潘承彪《解析数论基础》p.4