Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,log,Gamma)

 

0.1Bearbeiten
{\displaystyle \int _{0}^{1}\log \Gamma (x)\,dx=\log {\sqrt {2\pi }}}{\displaystyle \int _{0}^{1}\log \Gamma (x)\,dx=\log {\sqrt {2\pi }}}
1. Beweis

{\displaystyle 2\int _{0}^{1}\log \Gamma (x)\,dx=\int _{0}^{1}\log \Gamma (x)\,dx+\int _{0}^{1}\log \Gamma (1-x)\,dx=\int _{0}^{1}\log {\Big (}\Gamma (x)\,\Gamma (1-x){\Big )}\,dx}{\displaystyle 2\int _{0}^{1}\log \Gamma (x)\,dx=\int _{0}^{1}\log \Gamma (x)\,dx+\int _{0}^{1}\log \Gamma (1-x)\,dx=\int _{0}^{1}\log {\Big (}\Gamma (x)\,\Gamma (1-x){\Big )}\,dx}

{\displaystyle =\int _{0}^{1}\log \left({\frac {\pi }{\sin \pi x}}\right)dx=\log \pi -\int _{0}^{1}\log \sin \pi x\,dx=\log \pi +\log 2\,\Rightarrow \,\int _{0}^{1}\log \Gamma (x)\,dx={\frac {1}{2}}\log(2\pi )}{\displaystyle =\int _{0}^{1}\log \left({\frac {\pi }{\sin \pi x}}\right)dx=\log \pi -\int _{0}^{1}\log \sin \pi x\,dx=\log \pi +\log 2\,\Rightarrow \,\int _{0}^{1}\log \Gamma (x)\,dx={\frac {1}{2}}\log(2\pi )}

2. Beweis

Die Riemannsche Approximationssumme {\displaystyle \sum _{k=1}^{n-1}\log \Gamma \!\left({\frac {k}{n}}\right)\cdot {\frac {1}{n}}}{\displaystyle \sum _{k=1}^{n-1}\log \Gamma \!\left({\frac {k}{n}}\right)\cdot {\frac {1}{n}}} vereinfacht sich zu

{\displaystyle \log \left(\prod _{k=1}^{n-1}\Gamma \!\left({\frac {k}{n}}\right)\right)\cdot {\frac {1}{n}}=\log \left({\frac {{\sqrt {2\pi }}^{\,n-1}}{\sqrt {n}}}\right)\cdot {\frac {1}{n}}={\frac {(n-1)\log {\sqrt {2\pi }}-\log {\sqrt {n}}}{n}}}{\displaystyle \log \left(\prod _{k=1}^{n-1}\Gamma \!\left({\frac {k}{n}}\right)\right)\cdot {\frac {1}{n}}=\log \left({\frac {{\sqrt {2\pi }}^{\,n-1}}{\sqrt {n}}}\right)\cdot {\frac {1}{n}}={\frac {(n-1)\log {\sqrt {2\pi }}-\log {\sqrt {n}}}{n}}},

und konvergiert daher gegen {\displaystyle \log {\sqrt {2\pi }}}{\displaystyle \log {\sqrt {2\pi }}} für {\displaystyle n\to \infty \,}n\to \infty \,.

 
0.2Bearbeiten
{\displaystyle \int _{1/4}^{3/4}\log \Gamma (x)\,dx={\frac {1}{2}}\left(\log {\sqrt {2\pi }}-{\frac {G}{\pi }}\right)}{\displaystyle \int _{1/4}^{3/4}\log \Gamma (x)\,dx={\frac {1}{2}}\left(\log {\sqrt {2\pi }}-{\frac {G}{\pi }}\right)}
1. Beweis

{\displaystyle I:=\int _{1/4}^{3/4}\log \Gamma (x)\,dx=\int _{1/4}^{3/4}\log \Gamma (1-x)\,dx}{\displaystyle I:=\int _{1/4}^{3/4}\log \Gamma (x)\,dx=\int _{1/4}^{3/4}\log \Gamma (1-x)\,dx}

{\displaystyle \Rightarrow \,2I=\int _{1/4}^{3/4}\log {\Big (}\Gamma (x)\Gamma (1-x){\Big )}\,dx=\int _{1/4}^{3/4}\log \left({\frac {\pi }{\sin \pi x}}\right)dx={\frac {1}{2}}\log \pi -\int _{1/4}^{3/4}\log(\sin \pi x)\,dx}{\displaystyle \Rightarrow \,2I=\int _{1/4}^{3/4}\log {\Big (}\Gamma (x)\Gamma (1-x){\Big )}\,dx=\int _{1/4}^{3/4}\log \left({\frac {\pi }{\sin \pi x}}\right)dx={\frac {1}{2}}\log \pi -\int _{1/4}^{3/4}\log(\sin \pi x)\,dx},

wobei {\displaystyle \int _{1/4}^{3/4}\log(\sin \pi x)\,dx=\int _{-1/4}^{1/4}\log(\cos \pi x)\,dx=2\int _{0}^{1/4}\log(\cos \pi x)\,dx}{\displaystyle \int _{1/4}^{3/4}\log(\sin \pi x)\,dx=\int _{-1/4}^{1/4}\log(\cos \pi x)\,dx=2\int _{0}^{1/4}\log(\cos \pi x)\,dx} {\displaystyle ={\frac {1}{\pi }}\int _{0}^{\frac {\pi }{2}}\log \left(\cos {\frac {x}{2}}\right)dx={\frac {G}{\pi }}-{\frac {1}{2}}\log 2}{\displaystyle ={\frac {1}{\pi }}\int _{0}^{\frac {\pi }{2}}\log \left(\cos {\frac {x}{2}}\right)dx={\frac {G}{\pi }}-{\frac {1}{2}}\log 2} ist.

Also ist {\displaystyle 2I={\frac {1}{2}}\log(2\pi )-{\frac {G}{\pi }}}{\displaystyle 2I={\frac {1}{2}}\log(2\pi )-{\frac {G}{\pi }}}.

 
1.1Bearbeiten
{\displaystyle \int _{u}^{u+1}\log \Gamma (x)\,dx=u\,{\Big (}\log(u)-1{\Big )}+\log {\sqrt {2\pi }}\qquad u>0}{\displaystyle \int _{u}^{u+1}\log \Gamma (x)\,dx=u\,{\Big (}\log(u)-1{\Big )}+\log {\sqrt {2\pi }}\qquad u>0}
Beweis (Raabesche Formel)

{\displaystyle \int _{u}^{u+1}\log \Gamma (x)\,dx=\int _{0}^{u+1}\log \Gamma (x)\,dx-\int _{0}^{u}\log \Gamma (x)\,dx}{\displaystyle \int _{u}^{u+1}\log \Gamma (x)\,dx=\int _{0}^{u+1}\log \Gamma (x)\,dx-\int _{0}^{u}\log \Gamma (x)\,dx}

{\displaystyle =\int _{0}^{1}\log \Gamma (x)\,dx+\int _{1}^{u+1}\log \Gamma (x)\,dx-\int _{0}^{u}\log \Gamma (x)\,dx}{\displaystyle =\int _{0}^{1}\log \Gamma (x)\,dx+\int _{1}^{u+1}\log \Gamma (x)\,dx-\int _{0}^{u}\log \Gamma (x)\,dx}

{\displaystyle =\log {\sqrt {2\pi }}+\int _{0}^{u}\log \Gamma (x+1)\,dx-\int _{0}^{u}\log \Gamma (x)\,dx}{\displaystyle =\log {\sqrt {2\pi }}+\int _{0}^{u}\log \Gamma (x+1)\,dx-\int _{0}^{u}\log \Gamma (x)\,dx}.

Wegen {\displaystyle \log \Gamma (x+1)-\log \Gamma (x)=\log x\,}{\displaystyle \log \Gamma (x+1)-\log \Gamma (x)=\log x\,} ist

{\displaystyle \int _{0}^{u}\log \Gamma (x+1)dx-\int _{0}^{u}\log \Gamma (x)dx=u\,{\Big (}\log(u)-1{\Big )}}{\displaystyle \int _{0}^{u}\log \Gamma (x+1)dx-\int _{0}^{u}\log \Gamma (x)dx=u\,{\Big (}\log(u)-1{\Big )}}.

posted on 2021-05-05 02:49  Eufisky  阅读(48)  评论(0编辑  收藏  举报

导航