Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,log,cosh)

 

1.1Bearbeiten
{\displaystyle \int _{-\infty }^{\infty }{\frac {\log(\alpha ^{2}+x^{2})}{\cosh \pi x}}\,dx=4\log \left({\sqrt {2}}\,\,{\frac {\Gamma \left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)}{\Gamma \left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)}}\right)\qquad {\text{Re}}(\alpha )>0}{\displaystyle \int _{-\infty }^{\infty }{\frac {\log(\alpha ^{2}+x^{2})}{\cosh \pi x}}\,dx=4\log \left({\sqrt {2}}\,\,{\frac {\Gamma \left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)}{\Gamma \left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)}}\right)\qquad {\text{Re}}(\alpha )>0}
Beweis

Setzt man {\displaystyle f(z)={\frac {2\alpha }{(\alpha ^{2}+z^{2})\cosh \pi z}}}{\displaystyle f(z)={\frac {2\alpha }{(\alpha ^{2}+z^{2})\cosh \pi z}}}, so ist

{\displaystyle 2\pi i\,\;{\text{res}}(f,i\alpha )={\frac {2\pi }{\cos \alpha \pi }}=\pi \cot \left[\left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)\pi \right]-\pi \cot \left[\left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)\pi \right]}{\displaystyle 2\pi i\,\;{\text{res}}(f,i\alpha )={\frac {2\pi }{\cos \alpha \pi }}=\pi \cot \left[\left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)\pi \right]-\pi \cot \left[\left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)\pi \right]}.

Und {\displaystyle 2\pi i\sum _{k=0}^{\infty }{\text{res}}\left(f,i\,{\frac {2k+1}{2}}\right)=\sum _{k=0}^{\infty }(-1)^{k}\left[{\frac {4}{2k+1+2\alpha }}-{\frac {4}{2k+1-2\alpha }}\right]}{\displaystyle 2\pi i\sum _{k=0}^{\infty }{\text{res}}\left(f,i\,{\frac {2k+1}{2}}\right)=\sum _{k=0}^{\infty }(-1)^{k}\left[{\frac {4}{2k+1+2\alpha }}-{\frac {4}{2k+1-2\alpha }}\right]}

{\displaystyle =\left[\psi \left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)-\psi \left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)\right]-\left[\psi \left({\frac {3}{4}}-{\frac {\alpha }{2}}\right)-\psi \left({\frac {1}{4}}-{\frac {\alpha }{2}}\right)\right]}{\displaystyle =\left[\psi \left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)-\psi \left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)\right]-\left[\psi \left({\frac {3}{4}}-{\frac {\alpha }{2}}\right)-\psi \left({\frac {1}{4}}-{\frac {\alpha }{2}}\right)\right]},

wobei {\displaystyle \psi \left({\frac {3}{4}}-{\frac {\alpha }{2}}\right)=\psi \left(1-\left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)\right)=\psi \left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)+\pi \cot \left[\left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)\pi \right]}{\displaystyle \psi \left({\frac {3}{4}}-{\frac {\alpha }{2}}\right)=\psi \left(1-\left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)\right)=\psi \left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)+\pi \cot \left[\left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)\pi \right]}

und {\displaystyle \psi \left({\frac {1}{4}}-{\frac {\alpha }{2}}\right)=\psi \left(1-\left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)\right)=\psi \left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)+\pi \cot \left[\left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)\pi \right]}{\displaystyle \psi \left({\frac {1}{4}}-{\frac {\alpha }{2}}\right)=\psi \left(1-\left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)\right)=\psi \left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)+\pi \cot \left[\left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)\pi \right]} ist.

Integrationsweg4.PNG

{\displaystyle \int _{-\infty }^{\infty }f(x)\,dx=\lim _{N\to \infty }\oint _{\gamma _{N}}f\,dz=2\pi i\,\sum _{{\text{Im}}>0}{\text{res}}f=2\left[\psi \left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)-\psi \left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)\right]}{\displaystyle \int _{-\infty }^{\infty }f(x)\,dx=\lim _{N\to \infty }\oint _{\gamma _{N}}f\,dz=2\pi i\,\sum _{{\text{Im}}>0}{\text{res}}f=2\left[\psi \left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)-\psi \left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)\right]}.

Integriere nun beide Seiten nach {\displaystyle \alpha \,}\alpha\,:

{\displaystyle \underbrace {\int _{-\infty }^{\infty }{\frac {\log(\alpha ^{2}+x^{2})}{\cosh \pi x}}\,dx} _{=:U(\alpha )}=\underbrace {4\left[\log \Gamma \left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)-\log \Gamma \left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)\right]} _{=:V(\alpha )}+C}{\displaystyle \underbrace {\int _{-\infty }^{\infty }{\frac {\log(\alpha ^{2}+x^{2})}{\cosh \pi x}}\,dx} _{=:U(\alpha )}=\underbrace {4\left[\log \Gamma \left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)-\log \Gamma \left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)\right]} _{=:V(\alpha )}+C}

Wegen {\displaystyle U(\alpha )-\log(\alpha ^{2})=U(\alpha )-\int _{-\infty }^{\infty }{\frac {\log(\alpha ^{2})}{\cosh \pi x}}\,dx=\int _{-\infty }^{\infty }{\frac {\log \left(1+{\frac {x^{2}}{\alpha ^{2}}}\right)}{\cosh \pi x}}\,dx\to 0}{\displaystyle U(\alpha )-\log(\alpha ^{2})=U(\alpha )-\int _{-\infty }^{\infty }{\frac {\log(\alpha ^{2})}{\cosh \pi x}}\,dx=\int _{-\infty }^{\infty }{\frac {\log \left(1+{\frac {x^{2}}{\alpha ^{2}}}\right)}{\cosh \pi x}}\,dx\to 0} für {\displaystyle \alpha \to \infty \,}{\displaystyle \alpha \to \infty \,}

und {\displaystyle V(\alpha )-\log(\alpha ^{2})\to -4\log {\sqrt {2}}}{\displaystyle V(\alpha )-\log(\alpha ^{2})\to -4\log {\sqrt {2}}} muss {\displaystyle C=4\log {\sqrt {2}}}{\displaystyle C=4\log {\sqrt {2}}} sein.

Daher lässt sich die rechte Seite auch schreiben als {\displaystyle 4\log \left({\sqrt {2}}\,\;{\frac {\Gamma \left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)}{\Gamma \left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)}}\right)}{\displaystyle 4\log \left({\sqrt {2}}\,\;{\frac {\Gamma \left({\frac {3}{4}}+{\frac {\alpha }{2}}\right)}{\Gamma \left({\frac {1}{4}}+{\frac {\alpha }{2}}\right)}}\right)}.

 
1.2Bearbeiten
{\displaystyle \int _{0}^{\infty }{\frac {\log x}{\cosh x+\cos \pi \alpha }}\,dx={\frac {\pi }{\sin \pi \alpha }}\log \left((2\pi )^{\alpha }\,\,{\frac {\Gamma \left({\frac {1+\alpha }{2}}\right)}{\Gamma \left({\frac {1-\alpha }{2}}\right)}}\right)\qquad 0<\alpha <1}{\displaystyle \int _{0}^{\infty }{\frac {\log x}{\cosh x+\cos \pi \alpha }}\,dx={\frac {\pi }{\sin \pi \alpha }}\log \left((2\pi )^{\alpha }\,\,{\frac {\Gamma \left({\frac {1+\alpha }{2}}\right)}{\Gamma \left({\frac {1-\alpha }{2}}\right)}}\right)\qquad 0<\alpha <1}

posted on   Eufisky  阅读(76)  评论(0编辑  收藏  举报

编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
历史上的今天:
2018-05-05 三角不等式
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

导航

统计

点击右上角即可分享
微信分享提示