Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,log,cos)

 

0.1Bearbeiten
{\displaystyle \int _{0}^{\pi }\log \left(\cos {\frac {x}{2}}\right)\,dx=-\pi \log 2}{\displaystyle \int _{0}^{\pi }\log \left(\cos {\frac {x}{2}}\right)\,dx=-\pi \log 2}

 

 
0.2Bearbeiten
{\displaystyle \int _{0}^{\frac {\pi }{2}}\log \left(\cos {\frac {x}{2}}\right)\,dx=G-{\frac {\pi }{2}}\log 2}{\displaystyle \int _{0}^{\frac {\pi }{2}}\log \left(\cos {\frac {x}{2}}\right)\,dx=G-{\frac {\pi }{2}}\log 2}

 

 
0.3Bearbeiten
{\displaystyle \int _{0}^{\pi }x^{2}\,\log ^{2}\left(2\cos {\frac {x}{2}}\right)\,dx={\frac {11\pi ^{5}}{180}}}{\displaystyle \int _{0}^{\pi }x^{2}\,\log ^{2}\left(2\cos {\frac {x}{2}}\right)\,dx={\frac {11\pi ^{5}}{180}}}

 

 
0.4Bearbeiten
{\displaystyle \int _{0}^{\frac {\pi }{2}}{\frac {x^{2}}{x^{2}+\log ^{2}(2\cos x)}}\,dx={\frac {\pi }{8}}\left(1-\gamma +\log 2\pi \right)}{\displaystyle \int _{0}^{\frac {\pi }{2}}{\frac {x^{2}}{x^{2}+\log ^{2}(2\cos x)}}\,dx={\frac {\pi }{8}}\left(1-\gamma +\log 2\pi \right)}

 

 
1.1Bearbeiten
{\displaystyle \int _{0}^{\pi }\log \left(1-2\alpha \cos x+\alpha ^{2}\right)dx=\left\{{\begin{matrix}0&|\alpha |\leq 1\\\\2\pi \log |\alpha |&|\alpha |>1\end{matrix}}\right.\qquad ,\qquad \alpha \in \mathbb {R} }{\displaystyle \int _{0}^{\pi }\log \left(1-2\alpha \cos x+\alpha ^{2}\right)dx=\left\{{\begin{matrix}0&|\alpha |\leq 1\\\\2\pi \log |\alpha |&|\alpha |>1\end{matrix}}\right.\qquad ,\qquad \alpha \in \mathbb {R} }

posted on 2021-05-05 02:43  Eufisky  阅读(54)  评论(0编辑  收藏  举报

导航