Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,exp,Gamma)

 

2.1Bearbeiten
{\displaystyle {\frac {1}{2\pi i}}\int _{a-i\infty }^{a+i\infty }\Gamma (s)\,t^{-s}\,ds=e^{-t}\qquad a>0\,,\,{\text{Re}}(t)>0}{\displaystyle {\frac {1}{2\pi i}}\int _{a-i\infty }^{a+i\infty }\Gamma (s)\,t^{-s}\,ds=e^{-t}\qquad a>0\,,\,{\text{Re}}(t)>0}
Beweis (Cahen-Mellin Integral)

Diese Formel ergibt sich aus der Mellin-Rücktransformation.

Aus {\displaystyle \Gamma (s)={\mathcal {M}}{\big [}e^{-t}{\big ]}(s)=\int _{0}^{\infty }e^{-t}\,t^{s-1}\,dt}{\displaystyle \Gamma (s)={\mathcal {M}}{\big [}e^{-t}{\big ]}(s)=\int _{0}^{\infty }e^{-t}\,t^{s-1}\,dt}

folgt {\displaystyle e^{-t}={\mathcal {M}}^{-1}[\Gamma (s)](t)={\frac {1}{2\pi i}}\int _{a-i\infty }^{a+i\infty }\Gamma (s)\,t^{-s}\,ds}{\displaystyle e^{-t}={\mathcal {M}}^{-1}[\Gamma (s)](t)={\frac {1}{2\pi i}}\int _{a-i\infty }^{a+i\infty }\Gamma (s)\,t^{-s}\,ds}.

 
2.2Bearbeiten
{\displaystyle {\frac {1}{2\pi i}}\int _{-i\infty }^{i\infty }e^{2bix}\,|\Gamma (\alpha +x)|^{2}\,dx={\frac {\Gamma (2\alpha )}{(2\cos b)^{2\alpha }}}\qquad {\text{Re}}(\alpha )>0\,,\,\left|{\text{Re}}(b)\right|<{\frac {\pi }{2}}}{\displaystyle {\frac {1}{2\pi i}}\int _{-i\infty }^{i\infty }e^{2bix}\,|\Gamma (\alpha +x)|^{2}\,dx={\frac {\Gamma (2\alpha )}{(2\cos b)^{2\alpha }}}\qquad {\text{Re}}(\alpha )>0\,,\,\left|{\text{Re}}(b)\right|<{\frac {\pi }{2}}}
 
3.1Bearbeiten
{\displaystyle \int _{-\infty }^{\infty }{\frac {e^{itx}}{\Gamma (\mu +x)\Gamma (\nu -x)}}\,dx=\left\{{(2cost2)μ+ν2Γ(μ+ν1)ei(μν)t/2π<t<π0sonst}\right.\qquad {\text{Re}}(\mu +\nu )>1}
Beweis

Setze {\displaystyle f(t)=\left\{{(2cost2)μ+ν2Γ(μ+ν1)ei(μν)t/2π<t<π0sonst}\right.}

und berechne davon die Fouriertransformierte {\displaystyle {\hat {f}}(x)={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(t)e^{-ixt}\,dt}{\displaystyle {\hat {f}}(x)={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(t)e^{-ixt}\,dt}.

Das ist {\displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\pi }^{\pi }{\frac {\left(2\cos {\frac {t}{2}}\right)^{\mu +\nu -2}}{\Gamma (\mu +\nu -1)}}\,e^{-i(\mu -\nu )t/2}\,e^{-ixt}\,dt}{\displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\pi }^{\pi }{\frac {\left(2\cos {\frac {t}{2}}\right)^{\mu +\nu -2}}{\Gamma (\mu +\nu -1)}}\,e^{-i(\mu -\nu )t/2}\,e^{-ixt}\,dt}, da {\displaystyle f(t)\,}{\displaystyle f(t)\,} für {\displaystyle |t|\geq \pi }{\displaystyle |t|\geq \pi } verschwindet.

Und das ist {\displaystyle {\frac {2}{\sqrt {2\pi }}}\int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}{\frac {\left(2\cos t\right)^{\mu +\nu -2}}{\Gamma (\mu +\nu -1)}}\,e^{-i(\mu -\nu +2x)t}\,dt}{\displaystyle {\frac {2}{\sqrt {2\pi }}}\int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}{\frac {\left(2\cos t\right)^{\mu +\nu -2}}{\Gamma (\mu +\nu -1)}}\,e^{-i(\mu -\nu +2x)t}\,dt} nach der Substitution {\displaystyle t\mapsto 2t}{\displaystyle t\mapsto 2t}.

Der ungerade Anteil hebt sich auf; somit ist {\displaystyle {\hat {f}}(x)={\frac {2}{\sqrt {2\pi }}}\int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}{\frac {\left(2\cos t\right)^{\mu +\nu -2}}{\Gamma (\mu +\nu -1)}}\,\cos(\mu -\nu +2x)t\,dt}{\displaystyle {\hat {f}}(x)={\frac {2}{\sqrt {2\pi }}}\int _{-{\frac {\pi }{2}}}^{\frac {\pi }{2}}{\frac {\left(2\cos t\right)^{\mu +\nu -2}}{\Gamma (\mu +\nu -1)}}\,\cos(\mu -\nu +2x)t\,dt},

was sich aufgrund der Symmetrie auch als {\displaystyle {\frac {1}{\sqrt {2\pi }}}\,{\frac {2^{\mu +\nu }}{\Gamma (\mu +\nu -1)}}\,\int _{0}^{\frac {\pi }{2}}\left(\cos t\right)^{\mu +\nu -2}\,\cos(\mu -\nu +2x)t\,dt}{\displaystyle {\frac {1}{\sqrt {2\pi }}}\,{\frac {2^{\mu +\nu }}{\Gamma (\mu +\nu -1)}}\,\int _{0}^{\frac {\pi }{2}}\left(\cos t\right)^{\mu +\nu -2}\,\cos(\mu -\nu +2x)t\,dt} schreiben lässt.

Nach der Cauchyschen Cosinus-Integralformel {\displaystyle \int _{0}^{\frac {\pi }{2}}(\cos t)^{\alpha -1}\,\cos \beta t\,dt={\frac {\pi }{2^{\alpha }}}\,{\frac {\Gamma (\alpha )}{\Gamma \left({\frac {\alpha +\beta -1}{2}}\right)\,\Gamma \left({\frac {\alpha +\beta -1}{2}}\right)}}}{\displaystyle \int _{0}^{\frac {\pi }{2}}(\cos t)^{\alpha -1}\,\cos \beta t\,dt={\frac {\pi }{2^{\alpha }}}\,{\frac {\Gamma (\alpha )}{\Gamma \left({\frac {\alpha +\beta -1}{2}}\right)\,\Gamma \left({\frac {\alpha +\beta -1}{2}}\right)}}} ist nun

{\displaystyle {\hat {f}}(x)={\frac {1}{\sqrt {2\pi }}}\,{\frac {2^{\mu +\nu }}{\Gamma (\mu +\nu -1)}}\,{\frac {\pi }{2^{\mu +\nu -1}}}\,{\frac {\Gamma (\mu +\nu -1)}{\Gamma \left({\frac {(\mu +\nu -1)+(\mu -\nu +2x)+1}{2}}\right)\,\Gamma \left({\frac {(\mu +\nu -1)-(\mu -\nu +2x)+1}{2}}\right)}}={\frac {\sqrt {2\pi }}{\Gamma (\mu +x)\,\Gamma (\nu -x)}}}{\displaystyle {\hat {f}}(x)={\frac {1}{\sqrt {2\pi }}}\,{\frac {2^{\mu +\nu }}{\Gamma (\mu +\nu -1)}}\,{\frac {\pi }{2^{\mu +\nu -1}}}\,{\frac {\Gamma (\mu +\nu -1)}{\Gamma \left({\frac {(\mu +\nu -1)+(\mu -\nu +2x)+1}{2}}\right)\,\Gamma \left({\frac {(\mu +\nu -1)-(\mu -\nu +2x)+1}{2}}\right)}}={\frac {\sqrt {2\pi }}{\Gamma (\mu +x)\,\Gamma (\nu -x)}}}.

Die behauptete Gleichung ist dann die Rücktransformation {\displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }{\hat {f}}(x)\,e^{itx}\,dx=f(t)}{\displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }{\hat {f}}(x)\,e^{itx}\,dx=f(t)}.

posted on   Eufisky  阅读(54)  评论(0编辑  收藏  举报

编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
历史上的今天:
2018-05-05 三角不等式
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

导航

统计

点击右上角即可分享
微信分享提示