Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,Ci)

 

2.1Bearbeiten
{\displaystyle \int _{0}^{\infty }{\text{Ci}}(ax)\,{\text{Ci}}(bx)\,dx={\frac {1}{\max\{a,b\}}}\cdot {\frac {\pi }{2}}\qquad a,b>0}{\displaystyle \int _{0}^{\infty }{\text{Ci}}(ax)\,{\text{Ci}}(bx)\,dx={\frac {1}{\max\{a,b\}}}\cdot {\frac {\pi }{2}}\qquad a,b>0}
Beweis

In der Formel

{\displaystyle \int {\text{Ci}}(ax)\,{\text{Ci}}(bx)\,dx=x\,{\text{Ci}}(ax)\,{\text{Ci}}(bx)-{\frac {\sin ax}{a}}\,{\text{Ci}}(bx)-{\frac {\sin bx}{b}}\,{\text{Ci}}(ax)+{\frac {1}{2a}}{\Big (}{\text{Si}}(ax+bx)+{\text{Si}}(ax-bx){\Big )}+{\frac {1}{2b}}{\Big (}{\text{Si}}(ax+bx)-{\text{Si}}(ax-bx){\Big )}}{\displaystyle \int {\text{Ci}}(ax)\,{\text{Ci}}(bx)\,dx=x\,{\text{Ci}}(ax)\,{\text{Ci}}(bx)-{\frac {\sin ax}{a}}\,{\text{Ci}}(bx)-{\frac {\sin bx}{b}}\,{\text{Ci}}(ax)+{\frac {1}{2a}}{\Big (}{\text{Si}}(ax+bx)+{\text{Si}}(ax-bx){\Big )}+{\frac {1}{2b}}{\Big (}{\text{Si}}(ax+bx)-{\text{Si}}(ax-bx){\Big )}}

setze {\displaystyle 0\,}0\, und {\displaystyle \infty }\infty  als Integrationsgrenzen ein.

Asymptotisch verhalten sich {\displaystyle {\text{Ci}}(ax)}{\displaystyle {\text{Ci}}(ax)} und {\displaystyle {\text{Ci}}(bx)}{\displaystyle {\text{Ci}}(bx)} für {\displaystyle x\to 0+}{\displaystyle x\to 0+} wie {\displaystyle \log x}\log x und für {\displaystyle x\to \infty \,}x\to \infty \, wie {\displaystyle {\frac {\cos x}{x}}}{\displaystyle {\frac {\cos x}{x}}}.

Also sind {\displaystyle {\Big [}x\,{\text{Ci}}(ax)\,{\text{Ci}}(bx){\Big ]}_{0}^{\infty }\,\,,\,\,{\Big [}{\frac {\sin ax}{a}}\,{\text{Ci}}(bx){\Big ]}_{0}^{\infty }\,\,,\,\,{\Big [}{\frac {\sin bx}{b}}\,{\text{Ci}}(ax){\Big ]}_{0}^{\infty }}{\displaystyle {\Big [}x\,{\text{Ci}}(ax)\,{\text{Ci}}(bx){\Big ]}_{0}^{\infty }\,\,,\,\,{\Big [}{\frac {\sin ax}{a}}\,{\text{Ci}}(bx){\Big ]}_{0}^{\infty }\,\,,\,\,{\Big [}{\frac {\sin bx}{b}}\,{\text{Ci}}(ax){\Big ]}_{0}^{\infty }} jeweils gleich {\displaystyle 0-0=0}{\displaystyle 0-0=0}.

Der übrige Term {\displaystyle \left[{\frac {1}{2a}}{\Big (}{\text{Si}}(ax+bx)+{\text{Si}}(ax-bx){\Big )}+{\frac {1}{2b}}{\Big (}{\text{Si}}(ax+bx)-{\text{Si}}(ax-bx){\Big )}\right]_{0}^{\infty }}{\displaystyle \left[{\frac {1}{2a}}{\Big (}{\text{Si}}(ax+bx)+{\text{Si}}(ax-bx){\Big )}+{\frac {1}{2b}}{\Big (}{\text{Si}}(ax+bx)-{\text{Si}}(ax-bx){\Big )}\right]_{0}^{\infty }} verschwindet für {\displaystyle x=0}x=0.

Für {\displaystyle x\to \infty }{\displaystyle x\to \infty } geht der Term gegen

{\displaystyle \bullet \quad {\frac {1}{2a}}\left({\frac {\pi }{2}}+{\frac {\pi }{2}}\right)+{\frac {1}{2b}}\left({\frac {\pi }{2}}-{\frac {\pi }{2}}\right)={\frac {1}{a}}\cdot {\frac {\pi }{2}}}{\displaystyle \bullet \quad {\frac {1}{2a}}\left({\frac {\pi }{2}}+{\frac {\pi }{2}}\right)+{\frac {1}{2b}}\left({\frac {\pi }{2}}-{\frac {\pi }{2}}\right)={\frac {1}{a}}\cdot {\frac {\pi }{2}}} falls {\displaystyle a>b}{\displaystyle a>b}.

{\displaystyle \bullet \quad {\frac {1}{2a}}\left({\frac {\pi }{2}}+0\right)+{\frac {1}{2b}}\left({\frac {\pi }{2}}+0\right)={\frac {1}{a}}\cdot {\frac {\pi }{2}}={\frac {1}{b}}\cdot {\frac {\pi }{2}}}{\displaystyle \bullet \quad {\frac {1}{2a}}\left({\frac {\pi }{2}}+0\right)+{\frac {1}{2b}}\left({\frac {\pi }{2}}+0\right)={\frac {1}{a}}\cdot {\frac {\pi }{2}}={\frac {1}{b}}\cdot {\frac {\pi }{2}}} falls {\displaystyle a=b}a=b.

{\displaystyle \bullet \quad {\frac {1}{2a}}\left({\frac {\pi }{2}}-{\frac {\pi }{2}}\right)+{\frac {1}{2b}}\left({\frac {\pi }{2}}+{\frac {\pi }{2}}\right)={\frac {1}{b}}\cdot {\frac {\pi }{2}}}{\displaystyle \bullet \quad {\frac {1}{2a}}\left({\frac {\pi }{2}}-{\frac {\pi }{2}}\right)+{\frac {1}{2b}}\left({\frac {\pi }{2}}+{\frac {\pi }{2}}\right)={\frac {1}{b}}\cdot {\frac {\pi }{2}}} falls {\displaystyle a<b}a<b.

posted on 2021-05-05 02:33  Eufisky  阅读(38)  评论(0编辑  收藏  举报

导航