Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,arccot)

 

2.1Bearbeiten
{\displaystyle \int _{0}^{\infty }{\text{arccot}}(ax)\cdot {\text{arccot}}(bx)\ dx={\frac {\pi }{2}}\left[{\frac {1}{a}}\log \left({\frac {a+b}{b}}\right)-{\frac {1}{b}}\log \left({\frac {a+b}{a}}\right)\right]\qquad a,b>0}{\displaystyle \int _{0}^{\infty }{\text{arccot}}(ax)\cdot {\text{arccot}}(bx)\ dx={\frac {\pi }{2}}\left[{\frac {1}{a}}\log \left({\frac {a+b}{b}}\right)-{\frac {1}{b}}\log \left({\frac {a+b}{a}}\right)\right]\qquad a,b>0}

posted on 2021-05-05 02:30  Eufisky  阅读(23)  评论(0编辑  收藏  举报

导航