\documentclass[11pt,reqno,a4paper]{amsart}
\usepackage{amsfonts}
\usepackage{amssymb,latexsym,color}
\usepackage{enumerate}
\usepackage{ctex}
\usepackage{verbatim} %%% for multiline comment
\usepackage[colorlinks,linkcolor=red,anchorcolor=blue,citecolor=red]{hyperref}
\makeatletter
\@namedef{subjclassname@2010}{%
\textup{2010} Mathematics Subject Classification}
\makeatother
\usepackage{tikz}
\tikzset{elegant/.style={smooth,samples=100}}
\newtheorem{thm}{定理}[section] %%% the text all are textit form
\newtheorem{cor}[thm]{推论}
\newtheorem{lemma}[thm]{Lemma}
\newtheorem{prob}[thm]{Problem}
\newtheorem{exam}[thm]{例题}
\newtheorem{prop}[thm]{命题}
%% A numbered theorem with a fancy name:
\newtheorem{mainthm}[thm]{Main Theorem} %% Numbered objects of "non-theorem" style (text roman):
\theoremstyle{definition}
\newtheorem{defin}[thm]{Definition}
\newtheorem{rem}[thm]{Remark}
\newtheorem{eg}[thm]{Example}
\newtheorem{conj}[thm]{Conjecture}
\newtheorem{question}[thm]{问题}
\newtheorem{exercise}{练习}
%%\newtheorem{question}[thm]{Question}
\newtheorem*{xrem}{Remark} %% An unnumbered remark:
\frenchspacing
%\textwidth=16cm
%\textheight=23cm
%\parindent=16pt
%oddsidemargin=0cm
%\evensidemargin=0cm
%\topmargin=0cm
\textwidth=14cm
\textheight=21cm
\parindent=16pt
\oddsidemargin=1cm
\evensidemargin=1cm
\topmargin=1cm
\newcommand{\bl}{\color{blue}}
\newcommand{\red}{\color{red}}
\newcommand{\rd}{\mathrm{d}}
\newcommand{\norm}[1]{\left\lVert #1 \right\rVert} %定义范数符号
\newcommand{\kai}[1]{(#1)} %%直立的开括号\kai{环境字体的文字}
\newcommand{\sld}{{\rm \,:}}
\newcommand{\yi}{(1)}
\newcommand{\er}{(2)}
\newcommand{\san}{(3)}
\author{Yongtao Li}
\address{School of Mathematics and Statistics, Central South University,
Changsha, Hunan, 410083, P.R. China}
\email{ytli0921@csu.edu.cn}
\begin{document}
\begin{center} {\LARGE 数学人眼中的湖北(待修改)}\\ 曾熊, 李永涛 \end{center}
\section{2015年湖北卷理科}
\setcounter{equation}{0}
\renewcommand{\theequation}{\arabic{equation}}
%%%\renewcommand{\theequation}{1.\arabic{equation}}
对于某些不等式, 尤其是左边是数列前n项的和式(积式), 右边是某个常数,
我们应用归纳法, 一般来说是没有办法利用归纳假设做递推的,
这个时候, 需要待证不等式的右边进行改造和加强. 下面以2015年湖北理科数学压轴题为例.
\begin{exam}[2015年湖北卷, 理科第22题] \label{2015hubeili}
已知数列{an}的各项均为正数, 且bn=n(1+1n)nan(n∈N),
其中e为自然对数的底数.
\begin{itemize}
\item[(1)] 求函数f(x)=1+x−ex的单调区间, 并比较(1+1n)n与e的大小.
\item[(2)] 计算b1a1,b1b2a1a2,b1b2b3a1a2a3, 由此推测计算
b1b2⋯bna1a2⋯an的公式, 并给出证明.
\item[(3)] 令cn=(a1a2⋯an)1n, 数列{an}和{cn}的前n项和分别记为
Sn,Tn, 试证明\sld ~Tn<eSn.
\end{itemize}
\end{exam}
我们下面仅仅说明第(3)小问, 即需要证明
n∑k=1k√a1a2⋯ak⩽en∑k=1ak,(1)
上式称为Carleman不等式, 进一步, 我们还可以证明, 右端的常数e是最佳的,
也就是说, 没有更小的常数使得上式成立.
\begin{proof}[证明一]
令bk=(k+1)kkk−1(k=1,2,…,n), 根据AM-GM不等式可得
n∑k=1k√a1a2⋯ak=n∑k=1k√(a1b1)(a2b2)⋯(akbk)k+1⩽n∑k=11k(k+1)(n∑i=1aibi)=n∑i=1aibin∑j=i1j(j+1)=n∑i=1aibi(1i−1n+1).
注意到
bi(1i−1n+1)<bii=(1+1i)i<e.
因此, 不等式(1)成立.
我们接下来说明e是最佳的, 令ak=1/k, 于是
limn→∞n∑k=11k/n∑k=11n√n!=limn→∞n√n!n=e.
所以, e是使得不等式(1)成立的最小常数.
\end{proof}
[Math Processing Error]
[Math Processing Error]
\subparagraph{注}
对于AM-GM不等式, 我们在利用它放缩时, 通常会对它加以调整, 通过引入待定的参数使得不等式更加精确.
比如, 当λk>0时,
n√a1a2⋯an=n√(λ1a1)(λ2a2)⋯(λnan)n√λ1λ2⋯λn⩽1nn∑k=1λkakn√λ1λ2⋯λn.
特别地, 取λk=k时有
n√a1a2⋯an=n√a1(2a2)⋯(nan)n√n!⩽1n√n!⋅1nn∑k=1kak.
对于第(3)小问, 其难度是相当大的, 远远超出了中学生的能力范围, 属于竞赛类选手的难度.
直接证明不等式(1)比较不容易, 但是我们对其右端改造后, 就可以很轻松地利用数学归纳法,
对, 确实是很轻松.
[Math Processing Error]
[Math Processing Error]
当然, 这样的例子还有很多, 数学归纳法起着很巧妙绝伦的作用.
[Math Processing Error]
\subparagraph{注}
同样地, 利用归纳法可以证明如下不等式.
n∑k=1(1kk∑j=1xj)2⩽n∑k=1(k+1)x2k−1n(n∑k=1xk)2.
[Math Processing Error]
\noindent
{\bf 注}~
该不等式是Carleman不等式的加强(为什么).
下面几例是类似的交换求和顺序的技巧.
[Math Processing Error]
[Math Processing Error]
令ai=1/xi, 命题即为2005年美国数学月刊上第11145号征解问题:
[Math Processing Error]
\noindent
{\bf 注}~
从该不等式可以看出\\
(1) 若xk>0, 且∞∑n=11xn收敛,
则级数
∞∑n=1nx1+x2+⋯+xn
也是收敛的. \\
下面这个不等式留给读者.
n∑k=12k+1x1+x2+⋯+xk⩽4n∑k=11xk.
[Math Processing Error]
\section{2014年湖北卷理科}
\begin{exam}[2014湖北卷, 理科第22题] \label{2014hubeili}
\quad \\
设π为圆周率, e=2.71828⋯为自然对数的底数.
\begin{itemize}
\item[(1)] 求函数f(x)=lnxx的单调区间.
\item[(2)] 求e3,3e,eπ,πe,3π,π3这六个数的最大数与最小数.
\item[(3)] 将e3,3e,eπ,πe,3π,π3这六个数按从小到大的顺序排列, 并证明你的结论.
\end{itemize}
\end{exam}
[Math Processing Error]
我们下面得到关于lnπ的上界.
lnπ2eπ2e>lnee⇒lnπ<π22e2+12≈1.17.
关于常数e与π还有很多有趣的知识, 例如eπ被称为盖尔范德常数, 已经被证明是超越数,
奇怪的是, πe却了解甚少, 目前还没有被证明是否是无理数.
\section{2012年湖北卷理科}
[Math Processing Error]
\section{2011年湖北卷理科}
[Math Processing Error]
[Math Processing Error]
\section{2010年湖北卷理科}
首先, 引入一些预备知识.
[Math Processing Error]
\begin{proof}[证明] 直接移项构造函数 \[ f(x)=\ln (x+1)-\frac{x}{1+x},\quad g(x)=x-\ln (x+1). \] 然后求导数, 判断函数的单调性, 接着利用单调性确定最值点. \end{proof}
作为式(???)的一个直接应用是证明如下常见不等式:
a<a−blna−lnb<b,0<a<b.(2)
对于不等式(???), 变形即有,
11+y<ln(y+1)−lny<1y<lny−ln(y−1).(3)
在上式中, 令y=1,2,3,…,n可得
⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩ln2−ln1<1,ln3−ln2<12<ln2−ln1,ln4−ln3<13<ln3−ln2,⋯⋯⋯ln(n+1)−lnn<1n<lnn−ln(n−1).(4)
将上面所有不等式累加可得
ln(n+1)<1+12+13+⋯+1n<1+lnn.(5)
同理可以推出下面两式(留给读者).
ln22⋅ln33⋅ln44⋅⋯⋅lnnn<1n.1ln2+1ln3+1ln4+⋯+1lnn>32.(6)(7)
不等式(5)的几何直观如下.
\begin{center}
\begin{tikzpicture}[domain=-2:4,scale=1.2]
\draw[elegant,color=black,domain=0.3:4.8] plot (\x,{1/((\x))})
node[above ] {1x};
\fill[yellow!60!white] (0,0) -- (0.5,0) -- (0.5,2) -- (0,2) -- cycle;
\fill[yellow!60!white] (0.5,0) -- (1,0) -- (1,1) -- (0.5,1) -- cycle;
\fill[yellow!60!white] (1,0) -- (1.5,0) -- (1.5,0.66666) -- (1,0.66666) -- cycle;
\fill[yellow!60!white] (1.5,0) -- (2,0) -- (2,0.5) -- (1.5,0.5) -- cycle;
\fill[yellow!60!white] (3,0) -- (3.5,0) -- (3.5,0.29) -- (3,0.29) -- cycle;
\fill[yellow!60!white] (3.5,0) -- (4,0) -- (4,0.23) -- (3.5,0.23) -- cycle;
\draw[dashed] (0.5,0) -- (0.5,2) -- (0,2) ;
\draw[dashed] (1,0) -- (1,1) -- (0.5,1);
\draw[dashed] (1.5,0) -- (1.5,0.66666) -- (1,0.66666) ;
\draw[dashed] (2,0) -- (2,0.5) -- (1.5,0.5) ;
\draw[dashed] (3.5,0) -- (3.5,0.29) -- (3,0.29)--(3,0) ;
\draw[dashed] (4,0) -- (4,0.23) -- (3.5,0.23) ;
\draw (0,0) node[below left] {O};
\draw (0.5,0) node[below] {1};
\draw (1,0) node[below] {2};
\draw (1.5,0) node[below] {3};
\draw (2,0) node[below] {4};
\draw (3.5,0) node[below] {n−1};
\draw (4,0) node[below=2pt] {n};
\shade[ball color=black](2.35,0.2) circle(0.5pt);
\shade[ball color=black](2.5,0.2) circle(0.5pt);
\shade[ball color=black](2.65,0.2) circle(0.5pt);
\draw[->] (-0.4,0) -- (5,0) node[below=2pt] {x};
\draw[->] (0,-0.4) -- (0,3.5) node[left] {y};
\end{tikzpicture}
\begin{tikzpicture}[domain=-2:4,scale=1.2]
\fill[yellow!60!white] (0.5,0) -- (1,0) -- (1,2) -- (0.5,2) -- cycle;
\fill[yellow!60!white] (1,0) -- (1.5,0) -- (1.5,1) -- (1,1) -- cycle;
\fill[yellow!60!white] (1.5,0) -- (2,0) -- (2,0.66666) -- (1.5,0.66666) -- cycle;
\fill[yellow!60!white] (2,0) -- (2.5,0) -- (2.5,0.5) -- (2,0.5) -- cycle;
\fill[yellow!60!white] (3.5,0) -- (4,0) -- (4,0.32) -- (3.5,0.32) -- cycle;
\fill[yellow!60!white] (4,0) -- (4.5,0) -- (4.5,0.27) -- (4,0.27) -- cycle;
\draw[dashed] (0.5,0) -- (0.5,2) -- (1,2)--(1,1) ;
\draw[dashed] (1,0) -- (1,1) -- (1.5,1) -- (1.5,0.66666);
\draw[dashed] (1.5,0) -- (1.5,0.66666) -- (2,0.66666)--(2,0.5) ;
\draw[dashed] (2,0) -- (2,0.5) -- (2.5,0.5) --(2.5, 0) ;
\draw[dashed] (3.5,0) -- (3.5,0.32) -- (4,0.32)--(4,0.27) ;
\draw[dashed] (4,0) -- (4,0.27) -- (4.5,0.27) -- (4.5,0);
\draw (0,0) node[below left] {O};
\draw (0.5,0) node[below] {1};
\draw (1,0) node[below] {2};
\draw (1.5,0) node[below] {3};
\draw (2,0) node[below] {4};
\draw (3.5,0) node[below] {n−1};
\draw (4,0) node[below=2pt] {n};
\shade[ball color=black](2.85,0.2) circle(0.5pt);
\shade[ball color=black](3,0.2) circle(0.5pt);
\shade[ball color=black](3.15,0.2) circle(0.5pt);
\draw[->] (-0.4,0) -- (5,0) node[below=2pt] {x};
\draw[->] (0,-0.4) -- (0,3.5) node[left] {y};
\draw[elegant,color=black,domain=0.3:4.8] plot (\x,{1/((\x))})
node[above ] {1x};
\end{tikzpicture}
\end{center}
下面是定理???的加强.
[Math Processing Error]
[Math Processing Error]
该定理的几何直观如下:\\
\begin{center}
\begin{tikzpicture}[domain=-2:4,scale=2]
\draw[->] (-1.5,0) -- (4,0) node[below] {x};
\draw[->] (0,-2.5) -- (0,2) node[below left] {y};
%\draw[very thin,color=gray] (-3,-3) grid (3,3);
\foreach \x in {-0.5,0.5,1.5,2.5,3.5}
\draw (\x,-0.5pt) -- (\x,0.5pt) ;
\foreach \x in {1,2,3}
\draw (\x,-1pt) -- (\x,1pt) node[below=4pt] {\x};
\foreach \y in {-1.5,-0.5,0.5,1.5}
\draw (-0.5pt,\y) -- (0.5pt,\y);
\foreach \y in {-2,-1,1}
\draw (-1pt,\y) -- (1pt,\y) node[left=3pt] {\y};
\draw[elegant,color=black,domain=-0.9:3] plot (\x,{(\x)/(sqrt((\x)+1))})
node[above] {f(x)=x√x+1};
\draw[elegant,thick,color=red,domain=-0.9:3] plot(\x,{ln((\x)+1)}) node[right] {g(x)=ln(x+1)};
\draw[elegant,dashed,color=black,domain=-0.9:3] plot (\x,{(\x)/((1/2)*(\x)+1)})
node[below] {h(x)=x1+12x};
\draw[dashed,color=gray] (-1,-3) -- (-1,1.5);
\draw (-1,0) node[below left] {−1};
\shade[ball color=black](-1,0)circle(0.8pt);
\end{tikzpicture}
\end{center}
当x=1/y,y>0时, 有不等式
1y+12<ln(1+1y)=ln(y+1)−lny<1√y(y+1)<12(1y+1y+1).(8)
上式的几何解释如下面左图.
\begin{center}
\begin{tikzpicture}[domain=-2:4,scale=1.4]
\fill[yellow!60!white] (0.7,0) -- (2,0) -- (2,0.5) -- (0.7,1.42857) -- cycle;
\draw[dashed] (2,0) -- (2,0.5) -- (0.7,1.42857) -- (0.7,0) ;
\draw (0,0) node[below left] {O};
\draw[dashed] (1.35,0) -- (1.35,0.740) ;
\draw[dashed] (0.7, 1.06) -- (2,0.39) ;
\draw (0.7,0) node[below] {y};
\draw (1.35,0) node[below] {y+12};
\draw (2,0) node[below] {y+1};
\draw[->] (-0.3,0) -- (3,0) node[below=2pt] {x};
\draw[->] (0,-0.3) -- (0,3) node[left] {y};
\draw[color=black,domain=0.4:2.5] plot (\x,{1/((\x))})
node[above ] {1x};
\end{tikzpicture}
\begin{tikzpicture}[domain=-2:4,scale=1.4]
\fill[yellow!60!white] (0.5,2) -- (0.6,1.6666) -- (0.7,1.42857) -- (0.8,1.25)
-- (0.9,1.1111) -- (1,1) -- (1,2) -- cycle;
\fill[yellow!60!white] (1,1) -- (1.1,0.9090) -- (1.2,0.8333) -- (1.3,0.76923)--
(1.4,0.71428 ) -- (1.5,0.6666) -- (1.5,1) -- cycle;
\fill[yellow!60!white] (1.5,0.6666) -- (1.6,0.625) -- (1.7,0.58823) --
(1.8,0.5555) -- (1.9,0.52631) -- (2,0.5) -- (2,0.6666) -- cycle;
\fill[yellow!60!white] (2,0.5) -- (2.2,0.4545) -- (2.5,0.4) -- (2.5,0.5) -- cycle;
\fill[yellow!60!white] (3.5,0.32) -- (3.7,0.27) -- (4,0.25) -- (4,0.32) -- cycle;
\fill[yellow!60!white] (4,0.27) -- (4.5,0.2222) -- (4.5,0.27) -- cycle;
\draw[dashed] (0.5,0) -- (0.5,2) -- (1,2)--(1,1) ;
\draw[dashed] (1,0) -- (1,1) -- (1.5,1) -- (1.5,0.66666);
\draw[dashed] (1.5,0) -- (1.5,0.66666) -- (2,0.66666)--(2,0.5) ;
\draw[dashed] (2,0) -- (2,0.5) -- (2.5,0.5) --(2.5, 0) ;
\draw[dashed] (3.5,0) -- (3.5,0.32) -- (4,0.32)--(4,0.27) ;
\draw[dashed] (4,0) -- (4,0.27) -- (4.5,0.27) -- (4.5,0);
\draw (0,0) node[below left] {O};
\draw (0.5,0) node[below] {1};
\draw (1,0) node[below] {2};
\draw (1.5,0) node[below] {3};
\draw (2,0) node[below] {4};
\draw (3.5,0) node[below] {n−1};
\draw (4,0) node[below=2pt] {n};
\shade[ball color=black](2.85,0.2) circle(0.5pt);
\shade[ball color=black](3,0.2) circle(0.5pt);
\shade[ball color=black](3.15,0.2) circle(0.5pt);
\draw[->] (-0.3,0) -- (5,0) node[below=2pt] {x};
\draw[->] (0,-0.5) -- (0,3) node[left] {y};
\draw[elegant,color=black,domain=0.35:4.8] plot (\x,{1/((\x))})
node[above ] {1x};
\end{tikzpicture}
\end{center}
[Math Processing Error]
[Math Processing Error]
利用上述不等式可以直接得到以下两个不等式.
11+12+12+12+13+12+⋯+1n+12<ln(n+1).
1√1⋅2+1√2⋅3+1√3⋅4+⋯+1√n⋅(n+1)>ln(n+1).
我们可以估计一些特殊的自然对数的值, 比如令x=1得
23<ln2<√22.(9)
[Math Processing Error]
湖北卷第(3)问的几何解释.
\begin{center}
\begin{tikzpicture}[domain=-2:4,scale=1.2]
\fill[yellow!60!white] (0.5,0) -- (1,0) -- (1,2) -- (0.5,2) -- cycle;
\fill[yellow!60!white] (1,0) -- (1.5,0) -- (1.5,1) -- (1,1) -- cycle;
\fill[yellow!60!white] (1.5,0) -- (2,0) -- (2,0.66666) -- (1.5,0.66666) -- cycle;
\fill[yellow!60!white] (2,0) -- (2.5,0) -- (2.5,0.5) -- (2,0.5) -- cycle;
\fill[yellow!60!white] (3.5,0) -- (4,0) -- (4,0.32) -- (3.5,0.32) -- cycle;
\fill[yellow!60!white] (4,0) -- (4.5,0) -- (4.5,0.27) -- (4,0.27) -- cycle;
\draw[dashed] (0.5,2) -- (1,1) -- (1.5,0.66666) -- (2,0.5) -- (2.5,0.4);
\draw[dashed] (0.5,0) -- (0.5,2) -- (1,2)--(1,1) ;
\draw[dashed] (1,0) -- (1,1) -- (1.5,1) -- (1.5,0.66666);
\draw[dashed] (1.5,0) -- (1.5,0.66666) -- (2,0.66666)--(2,0.5) ;
\draw[dashed] (2,0) -- (2,0.5) -- (2.5,0.5) --(2.5, 0) ;
\draw[dashed] (3.5,0) -- (3.5,0.32) -- (4,0.32)--(4,0.27) ;
\draw[dashed] (4,0) -- (4,0.27) -- (4.5,0.27) -- (4.5,0);
\draw (0,0) node[below left] {O};
\draw (0.5,0) node[below] {1};
\draw (1,0) node[below] {2};
\draw (1.5,0) node[below] {3};
\draw (2,0) node[below] {4};
\draw (3.5,0) node[below] {n−1};
\draw (4,0) node[below=2pt] {n};
\shade[ball color=black](2.85,0.2) circle(0.5pt);
\shade[ball color=black](3,0.2) circle(0.5pt);
\shade[ball color=black](3.15,0.2) circle(0.5pt);
\draw[->] (-0.4,0) -- (5,0) node[below=2pt] {x};
\draw[->] (0,-0.4) -- (0,3.5) node[left] {y};
\draw[elegant,color=black,domain=0.3:4.8] plot (\x,{1/((\x))})
node[above ] {1x};
\end{tikzpicture}
\end{center}
\begin{thm} 对任意的$x>-1$, 试证明\sld~ $\displaystyle x-\frac{1}{2}x^2\leqslant \ln (1+x)\leqslant x$. \end{thm}
类似的问题还有许多, 下面简单列举几例.
[Math Processing Error]
[Math Processing Error]
[Math Processing Error]
[Math Processing Error]
[Math Processing Error]
[Math Processing Error]
证明五的几何解释.
\begin{center}
\begin{tikzpicture}[domain=-2:4,scale=1.2]
\draw[elegant,color=black,domain=0.3:4.8] plot (\x,{1/((\x))})
node[above ] {22x−1};
\fill[yellow!60!white] (0,0) -- (0.5,0) -- (0.5,2) -- (0,2) -- cycle;
\fill[yellow!60!white] (0.5,0) -- (1,0) -- (1,1) -- (0.5,1) -- cycle;
\fill[yellow!60!white] (1,0) -- (1.5,0) -- (1.5,0.66666) -- (1,0.66666) -- cycle;
\fill[yellow!60!white] (1.5,0) -- (2,0) -- (2,0.5) -- (1.5,0.5) -- cycle;
\fill[yellow!60!white] (3,0) -- (3.5,0) -- (3.5,0.29) -- (3,0.29) -- cycle;
\fill[yellow!60!white] (3.5,0) -- (4,0) -- (4,0.23) -- (3.5,0.23) -- cycle;
\draw[dashed] (0.5,0) -- (0.5,2) -- (0,2) ;
\draw[dashed] (1,0) -- (1,1) -- (0.5,1);
\draw[dashed] (1.5,0) -- (1.5,0.66666) -- (1,0.66666) ;
\draw[dashed] (2,0) -- (2,0.5) -- (1.5,0.5) ;
\draw[dashed] (3.5,0) -- (3.5,0.29) -- (3,0.29)--(3,0) ;
\draw[dashed] (4,0) -- (4,0.23) -- (3.5,0.23) ;
\draw (0,0) node[below left] {O};
\draw (0.5,0) node[below] {1};
\draw (1,0) node[below] {2};
\draw (1.5,0) node[below] {3};
\draw (2,0) node[below] {4};
\draw (3.5,0) node[below] {n−1};
\draw (4,0) node[below=2pt] {n};
\shade[ball color=black](2.35,0.2) circle(0.5pt);
\shade[ball color=black](2.5,0.2) circle(0.5pt);
\shade[ball color=black](2.65,0.2) circle(0.5pt);
\draw[->] (-0.4,0) -- (5,0) node[below=2pt] {x};
\draw[->] (0,-0.4) -- (0,3.5) node[left] {y};
\end{tikzpicture}
\end{center}
我们保留第一个矩形, 后面的矩形放大为曲线所围面积.
n∑k=122k−1<2+∫n122x−1\rdx=2+ln(2n−1)<2+ln(2n+1).
[Math Processing Error]
[Math Processing Error]
[Math Processing Error]
注意到不等式(???)即为
12k−1+12k+1>ln(2k+1)−ln(2k−1).
证明一的几何解释为
\begin{center}
\begin{tikzpicture}[domain=-2:4,scale=2]
\fill[yellow!60!white] (0.5,0) -- (1,0) -- (1,1) -- (0.5,2) -- cycle;
\fill[yellow!60!white] (1,0) -- (1.5,0) -- (1.5,0.6666) -- (1,1) -- cycle;
\fill[yellow!60!white] (1.5,0) -- (2,0) -- (2,0.5) -- (1.5,0.66666) -- cycle;
\fill[yellow!60!white] (2,0) -- (2.5,0) -- (2.5,0.4) -- (2,0.5) -- cycle;
\fill[yellow!60!white] (3.5,0) -- (4,0) -- (4,0.25) -- (3.5,0.30) -- cycle;
%\fill[yellow!60!white] (4,0) -- (4.5,0) -- (4.5,0.2222) -- (4,0.25) -- cycle;
\draw[dashed] (1,0) -- (1,1) -- (0.5,2) --(0.5,0) ;
\draw[dashed] (1.5,0) -- (1.5,0.6666) -- (1,1);
\draw[dashed] (2,0) -- (2,0.5) -- (1.5,0.66666) ;
\draw[dashed] (2.5,0) -- (2.5,0.4) -- (2,0.5) ;
\draw[dashed] (4,0) -- (4,0.25) -- (3.5,0.30) -- (3.5,0);
%\draw[dashed] (4.5,0) -- (4.5,0.2222) -- (4,0.25);
\draw (0.25,0) node[below left] {O};
\draw (0.5,0) node[below] {1};
\draw (1,0) node[below] {3};
\draw (1.5,0) node[below] {5};
\draw (2,0) node[below] {7};
\draw (3.5,0) node[below] {2n−1};
\draw (4,0) node[below] {2n+1};
\shade[ball color=black](2.85,0.2) circle(0.5pt);
\shade[ball color=black](3,0.2) circle(0.5pt);
\shade[ball color=black](3.15,0.2) circle(0.5pt);
\draw[->] (-0.2,0) -- (5,0) node[below=2pt] {x};
\draw[->] (0.25,-0.4) -- (0.25,3) node[left] {y};
\draw[elegant,color=black,domain=0.4:4.8] plot (\x,{1/((\x))})
node[above ] {1x};
\end{tikzpicture}
\end{center}
[Math Processing Error]
证明二的的几何解释为
\begin{center}
\begin{tikzpicture}[domain=-2:4,scale=2]
\fill[yellow!60!white] (0.5,0) -- (0.75,0) -- (0.75,2) -- (0.5,2) -- cycle;
\fill[yellow!60!white] (1,0) -- (1.5,0) -- (1.5,1) -- (1,1) -- cycle;
\fill[yellow!60!white] (1.5,0) -- (2,0) -- (2,0.66666) -- (1.5,0.66666) -- cycle;
\fill[yellow!60!white] (2,0) -- (2.5,0) -- (2.5,0.5) -- (2,0.5) -- cycle;
\fill[yellow!60!white] (3.5,0) -- (4,0) -- (4,0.32) -- (3.5,0.32) -- cycle;
\fill[yellow!60!white] (4,0) -- (4.25,0) -- (4.25,0.27) -- (4,0.27) -- cycle;
\draw[dashed] (0.5,0) -- (0.5,2) --(0.75,2)-- (0.75,0) ;
\draw[dashed] (1,0) -- (1,1) -- (1.5,1) -- (1.5,0.66666);
\draw[dashed] (1.5,0) -- (1.5,0.66666) -- (2,0.66666)--(2,0.5) ;
\draw[dashed] (2,0) -- (2,0.5) -- (2.5,0.5) --(2.5, 0) ;
\draw[dashed] (3.5,0) -- (3.5,0.32) -- (4,0.32)--(4,0.27) ;
\draw[dashed] (4,0) -- (4,0.27) -- (4.25,0.27) -- (4.25,0);
\draw (0.25,0) node[below left] {O};
\draw (0.5,0) node[below] {1};
\draw (1,0) node[below] {3};
\draw (1.5,0) node[below] {5};
\draw (2,0) node[below] {7};
\draw (3.5,0) node[below] {2n−1};
\draw (4,0) node[below] {2n+1};
\shade[ball color=black](2.85,0.2) circle(0.5pt);
\shade[ball color=black](3,0.2) circle(0.5pt);
\shade[ball color=black](3.15,0.2) circle(0.5pt);
\draw[->] (-0.2,0) -- (5,0) node[below=2pt] {x};
\draw[->] (0.25,-0.4) -- (0.25,3) node[left] {y};
\draw[elegant,color=black,domain=0.4:4.8] plot (\x,{1/((\x))})
node[above ] {1x};
\end{tikzpicture}
\end{center}
[Math Processing Error]
对于第(2)问的结论, 它比上一个例题要弱, 这里在额外补充两种方法.
[Math Processing Error]
[Math Processing Error]
[Math Processing Error]
\begin{proof}[证明] 由(2)可知, 对任意$x\geqslant 1$都有 \begin{equation} x-\frac{1}{x}\geqslant 2\ln x. \end{equation} \end{proof}
[Math Processing Error]
[Math Processing Error]
\section{2007年湖北卷理科}
[Math Processing Error]
[Math Processing Error]
\begin{thebibliography}{99}
\bibitem{LM98}
L. Maligranda,
Why H\"{o}lder's inequality should be called Rogers' inequality,
Math. Ineq. and Appl. 1998 (1): 69--83.
\bibitem{LS05}
Y.-C. Li and S.-Y. Shaw,
A proof of H\"{o}lder's inequality using the Cauchy-Schwarz inequality,
Journal of Inequalities in Pure and Applied Mathematics, 2006, 7(2): 1--3.
\bibitem{MYS}
M. Shao, \textit{Proof without words: Bounding the Euler-Mascheroni constant},
College Mathematics Journal, 2015, 46(5): 347-347.
\bibitem{HK07}
胡克, 解析不等式的若干问题. 武汉: 武汉大学出版社, 2007.3.
\end{thebibliography}
\end{document}
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix