Start with the SVD decomposition of x:
x=UΣVT
Then ∥x∥∗=tr(√xTx)=tr(√(UΣVT)T(UΣVT))
⇒∥x∥∗=tr(√VΣUTUΣVT)=tr(√VΣ2VT)
By circularity of trace:
⇒∥x∥∗=tr(√VTVΣ2)=tr(√VTVΣ2)=tr(√Σ2)=tr(Σ)
Since the elements of Σ are non-negative.
Therefore nuclear norm can be also defined as the sum of the absolute values of the singular value decomposition of the input matrix.
Now, note that the absolute value function is not differentiable on every point in its domain, but you can find a subgradient.
∂∥x∥∗∂x=∂tr(Σ)∂x=tr(∂Σ)∂x
You should find ∂Σ. Since Σ is diagonal, the subdifferential set of Σ is: ∂Σ=ΣΣ−1∂Σ, now we have:
∂∥x∥∗∂x=tr(ΣΣ−1∂Σ)∂x (I)
So we should find ∂Σ.
x=UΣVT, therefore:
∂x=∂UΣVT+U∂ΣVT+UΣ∂VT
Therefore:
U∂ΣVT=∂x−∂UΣVT−UΣ∂VT
⇒UTU∂ΣVTV=UT∂xV−UT∂UΣVTV−UTUΣ∂VTV
⇒∂Σ=UT∂xV−UT∂UΣ−Σ∂VTV
⇒tr(∂Σ)=tr(UT∂xV−UT∂UΣ−Σ∂VTV)=tr(UT∂xV)+tr(−UT∂UΣ−Σ∂VTV)(1)(2)(3)
You can show that tr(−UT∂UΣ−Σ∂VTV)=0 (Hint: diagonal and antisymmetric matrices, proof in the comments.), therefore:
tr(∂Σ)=tr(UT∂xV)
By substitution into (I):
∂∥x∥∗∂x=tr(∂Σ)∂x=tr(UT∂xV)∂x=tr(VUT∂x)∂x=(VUT)T
Therefore you can use UVT as the subgradient.
参考:这里
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix