2008年高考数学江西卷压轴题

本文为整理,非原创,解法均收集自网络.来自兰琦博客

(2008年·江西·理)已知函数\(f(x)=\dfrac{1}{\sqrt{1+x}}+\dfrac{1}{\sqrt{1+a}}+\sqrt{\dfrac{ax}{ax+8}}\).

(1)当\(a=8\),求\(f(x)\)的单调区间;

(2)对任意正数\(a\),证明:\(1<f(x)<2\).


令\(b=x\),\(c=\dfrac{8}{ax}\),则第(2)问等价于:

若\(a,b,c>0\),\(abc=8\),求证:\[1<\dfrac{1}{\sqrt{1+a}}+\dfrac{1}{\sqrt{1+b}}+\dfrac{1}{\sqrt{1+c}}<2.\]

该不等式与2004年西部奥林匹克最后一题:

设\(a,b,c>0\),求证:\[1<\dfrac{a}{\sqrt{a^2+b^2}}+\dfrac{b}{\sqrt{b^2+c^2}}+\dfrac{c}{\sqrt{c^2+a^2}}\leqslant \dfrac{3\sqrt 2}{2}.\]类似,且证明比这道西部奥林匹克题还难.而这道西部奥林匹克题当年参赛选手无一人完全证出.

另外,CMO2003第三题:

给定正整数\(n\),求最小的正数\(\lambda\),使得对于任何\(\theta_i\in\left(0,\dfrac{\pi}{2}\right)\)(\(i=1,2,\cdots,n\)),只要\(\tan\theta_1\cdot\tan\theta_2\cdots\tan\theta_n=2^{\frac n2}\),就有\(\cos\theta_1+\cos\theta_2+\cdots+\cos\theta_n\)不大于\(\lambda\).

答案是:当\(n\geqslant 3\)时,\(\lambda=n-1\);当\(n=3\)时,令\[a=\tan^2\theta_1,b=\tan^2\theta_2,c=\tan^2\theta_3,\]即得江西压轴题右边的不等式.


命题人陶平生教授的证明:

对任意给定的\(a>0\),\(x>0\),因为\[f(x)=\dfrac{1}{\sqrt{1+x}}+\dfrac{1}{\sqrt{1+a}}+\dfrac{1}{\sqrt{1+\dfrac{8}{ax}}},\]若令\(b=\dfrac{8}{ax}\),则\(abx=8\),且\[f(x)=\dfrac{1}{\sqrt{1+x}}+\dfrac{1}{\sqrt{1+a}}+\dfrac{1}{\sqrt{1+b}}.\]

先证\(f(x)>1\).

因为\[\dfrac{1}{\sqrt{1+x}}>\dfrac{1}{1+x},\]又由\[2+a+b+x\geqslant 4\sqrt[4]{2abx}=8,\]得\[a+b+x\geqslant 6.\]所以\[\begin{split}f(x)&=\dfrac{1}{\sqrt{1+x}}+\dfrac{1}{\sqrt{1+a}}+\dfrac{1}{\sqrt{1+b}}\\&>\dfrac{1}{1+x}+\dfrac{1}{1+a}+\dfrac{1}{1+b}\\&=\dfrac{3+2(a+b+x)+(ab+bx+xa)}{(1+x)(1+a)(1+b)}\\&\geqslant \dfrac{9+(a+b+x)+(ab+bx+xa)}{(1+x)(1+a)(1+b)}\\&=\dfrac{1+(a+b+x)+(ab+bx+xa)+abx}{(1+x)(1+a)(1+b)}\\&=1.\end{split}\]

再证明\(f(x)<2\).

由\(x,a,b\)的对称性,不妨设\(x\geqslant a\geqslant b\),则\(0<b\leqslant 2\).

情形1:当\(a+b\geqslant 7\)时,此时\(x\geqslant a\geqslant 5\).

因此\[\dfrac{1}{\sqrt{1+b}}<1,\dfrac{1}{\sqrt{1+x}}+\dfrac{1}{\sqrt{1+a}}\leqslant \dfrac{2}{\sqrt{1+5}}<1,\]此时\[f(x)=\dfrac{1}{\sqrt{1+x}}+\dfrac{1}{\sqrt{1+a}}+\dfrac{1}{\sqrt{1+b}}<2.\]

情形2:当\(a+b<7\)时,\(x=\dfrac{8}{ab}\),\(\dfrac{1}{\sqrt{1+x}}=\sqrt{\dfrac{ab}{ab+8}}\).

因为\[\dfrac{1}{1+b}<1-\dfrac{b}{1+b}+\dfrac{b^2}{4(1+b)^2}=\left[1-\dfrac{b}{2(1+b)}\right]^2,\]所以\[\dfrac{1}{\sqrt{1+b}}<1-\dfrac{b}{2(1+b)}.\]同理得\[\dfrac{1}{\sqrt{1+a}}<1-\dfrac{a}{2(1+a)},\]于是\[f(x)<2-\dfrac 12\left(\dfrac{a}{1+a}+\dfrac{b}{1+b}-2\sqrt{\dfrac{ab}{ab+8}}\right).\]

而\[\dfrac{a}{1+a}+\dfrac{b}{1+b}\geqslant 2\sqrt{\dfrac{ab}{(1+a)(1+b)}}=2\sqrt{\dfrac{ab}{1+a+b+ab}}>2\sqrt{\dfrac{ab}{ab+8}},\]因此不等式得证.

综上所述,原不等式得证.


 张景中院士的作法:

原问题即三个正数\(a,b,c\)在\(abc=8\)的条件下求\[F(a,b,c)=\dfrac{1}{\sqrt{1+a}}+\dfrac{1}{\sqrt{1+b}}+\dfrac{1}{\sqrt{1+c}}\]的取值范围.

不妨设\(a\leqslant b\leqslant c\),记\(t=a\),\(k=ab\),\(c=\dfrac 8k\),把\(F(a,b,c)\)看成是关于\(t\)的函数\[f(t)=\dfrac{1}{\sqrt{1+t}}+\dfrac{1}{\sqrt{1+\dfrac{k}{t}}}+\dfrac{1}{\sqrt{1+\dfrac{8}{k}}},\]注意到变量和参数的范围是\[0<t\leqslant\sqrt k\leqslant 2,\]计算导数\[\begin{split}f'(t)&=\dfrac 12\left(-\left(1+t\right)^{-\frac 32}+\dfrac{k}{t^2}\left(1+\dfrac{k}{t}\right)^{-\frac 32}\right)\\&=\left[k^2(1+t)^3-t(t+k)^3\right]\cdot Q(t,k),\end{split}\]这里\(Q(t,k)\)是某个正值代数式.于是可以根据\[g(t)=k^2(1+t)^3-t(t+k)^3\]的正负来判断\(f(x)\)的单调性.

注意到\(g\left(\sqrt k\right)=0\),因式分解为\[g(t)=\left(k-t^2\right)\left[t^2-k(k-3)t+k\right],\]由于第二个因式的\[\Delta=k^2(k-3)^2-4k,\]当\(k<4\)时有\(\Delta<0\),于是有\(f(x)\)在\(\left(0,\sqrt{k}\right)\)上单调递增,从而\(f(t)\)在\(t=\sqrt k\)处最大.

从而可得\[f(t)>1\]以及\[f\left(1+\sqrt k\right)=\dfrac{2}{\sqrt{1+\sqrt k}}+\dfrac{1}{\sqrt{1+\dfrac{8}{k}}}<2.\]原命题得证.


不妨设\(a\leqslant b\leqslant c\),令\(\sqrt{ab}=\lambda\),由\(abc=8\)有\(0<\lambda\leqslant 2\).

设\[A=\dfrac{1}{\sqrt{1+a}}+\dfrac{1}{\sqrt{1+b}},\]再令\[u=\sqrt{1+a+b+\lambda^2},\]则\[u\geqslant 1+\lambda,\]所以\[A^2=\left(1-\lambda^2\right)+\dfrac{2}{u}+1,\]又令\(t=\dfrac{1}{u},0<t\leqslant \dfrac{1}{\lambda+1}\),则\[A^2=F(t)=\left(1-\lambda^2\right)t^2+2t+1,\]求导有\[F'(t)=2\left(1-\lambda^2\right)t+2,\]由\(\lambda\leqslant 2\)有\[F'\left(\dfrac{1}{\lambda+1}\right)=2-\lambda\geqslant 0,\]又\(F'(0)=1>0\),因此,对\(0<t\leqslant \dfrac{1}{\lambda+1}\),有\(F'(t)\geqslant 0\),所以\(F(t)\)在\(\left(0,\dfrac{1}{\lambda+1}\right]\)是增函数,则\[F(0)<F(t)\leqslant F\left(\dfrac{1}{\lambda+1}\right),\]即\[1<A\leqslant \dfrac 2{\sqrt{\lambda+1}},\]即当\(a,b>0\)且\(\sqrt{ab}\leqslant 2\)时,有\[1<\dfrac{1}{\sqrt{1+a}}+\dfrac{1}{\sqrt{1+b}}\leqslant \dfrac{2}{\sqrt{1+\sqrt{ab}}}.\]

应用该不等式立得欲证明不等式的左边.

要证明不等式的右边,还需证明\[\dfrac{2}{\sqrt{1+\sqrt{ab}}}+\dfrac{1}{\sqrt{1+\dfrac{8}{ab}}}<2,\]令\(\sqrt{1+\sqrt{ab}}=v,1<v\leqslant \sqrt 3\),则\[ab=\left(v^2-1\right)^3,\]此不等式等价于\[\dfrac{2}{v}+\dfrac{v^2-1}{\sqrt{\left(v^2-1\right)^2+8}}<2,\]用分析法容易证得.

综上,原不等式得证.


令\[u=\dfrac{1}{\sqrt{1+a}},v=\dfrac{1}{\sqrt{1+b}},w=\dfrac{1}{\sqrt{1+c}},\]则\[a=\dfrac{1}{u^2}-1,b=\dfrac{1}{v^2}-1,c=\dfrac{1}{w^2}-1,\]且\[\left(\dfrac{1}{u^2}-1\right)\left(\dfrac{1}{v^2}-1\right)\left(\dfrac{1}{w^2}-1\right)=8.\]

假设存在\(a,b,c>0\)且\(abc=8\),但左边不等式不成立,即存在\(u,v,w\)满足上式,但\[u+v+w\leqslant 1.\]

注意到\(0<u,v,w<1\),有\[1+u>1-u\geqslant v+w\geqslant 2\sqrt{vw}>0,\]所以\[\dfrac{1}{u^2}-1=\dfrac{(1-u)(1+u)}{u^2}>\dfrac{(1-u)^2}{u^2}\geqslant\dfrac{4vw}{u^2},\]同理\[\dfrac{1}{v^2}-1>\dfrac{4wu}{v^2},\dfrac{1}{w^2}-1>\dfrac{4uv}{w^2},\]从而可得\[\left(\dfrac{1}{u^2}-1\right)\left(\dfrac{1}{v^2}-1\right)\left(\dfrac{1}{w^2}-1\right)>61,\]矛盾,因此左边不等式得证.

假设存在\(a,b,c>0\)且\(abc=8\),但右边不等式不成立,即存在\(u,v,w\)满足上式,但\[u+v+w\geqslant 2.\]

注意到\(0<u,v,w<1\),有\[0<1+u<2,\]进而\[0<1-u\leqslant v+w-1=vw-(1-v)(1-w)<vw,\]从而\[0<\dfrac{1}{u^2}-1\dfrac{(1-u)(1+u)}{u^2}<\dfrac{2vw}{u^2},\]同理\[0<\dfrac{1}{v^2}-1<\dfrac{2wu}{v^2},0<\dfrac{1}{w^2}-1<\dfrac{2uv}{w^2},\]从而可得\[\left(\dfrac{1}{u^2}-1\right)\left(\dfrac{1}{v^2}-1\right)\left(\dfrac{1}{w^2}-1\right)<8,\]矛盾,因此右边不等式得证.

综上,原不等式得证.

posted on 2018-11-25 11:17  Eufisky  阅读(8578)  评论(0编辑  收藏  举报

导航