第六次作业

这个作业属于哪个课程 https://edu.cnblogs.com/campus/qdu/DS2020/
这个作业要求在哪里 https://edu.cnblogs.com/campus/qdu/DS2020/homework/11430
这个作业的目标 <掌握二叉树>
学号 2018204187

一、实验目的
1、掌握二叉树的基本特性
2、掌握二叉树的先序、中序、后序的递归遍历算法
3、理解二叉树的先序、中序、后序的非递归遍历算法
4、通过求二叉树的深度、叶子结点数和层序遍历等算法,理解二叉树的基本特性
二、实验预习
说明以下概念
1、二叉树:二叉树是指计算机科学中每个结点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。
2、递归遍历:由于二叉树所具有的递归性质,一棵非空的二叉树可以看作是由根节点、左子树和右子树3部分构成,因为若能依次遍历这3部分的信息,也就遍历了整个二叉树。按照左子树的遍历在右子树的遍历之前进行的约定,根访问根节点位置的不同,可以得到二叉的前序、中序、后序3种遍历方法。
3、非递归遍历:不用递归来进行遍历。
4、层序遍历:进行层序遍历时,对某一层的节点访问完后,再按照他们的访问次序对各个节点的左孩子和右孩子顺序访问,这样一层一层进行,先访问的节点其左右孩子也要先访问,这正好符合队列的操作特性。

#include<malloc.h>
#define MAX 20
typedef struct BTNode{       /*节点结构声明*/
	char data ;               /*节点数据*/
	struct BTNode *lchild;
	struct BTNode *rchild ;  /*指针*/
}*BiTree;

void createBiTree(BiTree *t){ /* 先序遍历创建二叉树*/
	char s;
	BiTree q;
	printf("\nplease input data:(exit for #)");
	s=getche();
	if(s=='#'){*t=NULL; return;}
	q=(BiTree)malloc(sizeof(struct BTNode));
	if(q==NULL){printf("Memory alloc failure!"); exit(0);}
	q->data=s;
	*t=q;
	createBiTree(&q->lchild); /*递归建立左子树*/
	createBiTree(&q->rchild); /*递归建立右子树*/
}

void PreOrder(BiTree p){  /* 先序遍历二叉树*/
    if ( p!= NULL ) {
       	printf("%c", p->data);
       	PreOrder( p->lchild ) ;
       	PreOrder( p->rchild) ;
    }
}
void InOrder(BiTree p){  /* 中序遍历二叉树*/
    if( p!= NULL ) {
 	 InOrder( p->lchild ) ;
   	 printf("%c", p->data);
   	 InOrder( p->rchild) ;
    }
}
void PostOrder(BiTree p){  /* 后序遍历二叉树*/
   if ( p!= NULL ) {
    	PostOrder( p->lchild ) ;
       	PostOrder( p->rchild) ;
       	printf("%c", p->data);
    }
}

void Preorder_n(BiTree p){ /*先序遍历的非递归算法*/
    BiTree stack[MAX],q;
    int top=0,i;
    for(i=0;i<MAX;i++) stack[i]=NULL;/*初始化栈*/
    q=p;
    while(q!=NULL){
        printf("%c",q->data);
        if(q->rchild!=NULL) stack[top++]=q->rchild;
        if(q->lchild!=NULL) q=q->lchild;
        else
            if(top>0) q=stack[--top];
            else q=NULL;
    }
}

void release(BiTree t){ /*释放二叉树空间*/
  	if(t!=NULL){
    	release(t->lchild);
    	release(t->rchild);
    	free(t);
  	}
}

int main(){
    BiTree t=NULL;
    createBiTree(&t);
    printf("\n\nPreOrder the tree is:");
    PreOrder(t);
    printf("\n\nInOrder the tree is:");
    InOrder(t);
    printf("\n\nPostOrder the tree is:");
    PostOrder(t);
    printf("\n\n先序遍历序列(非递归):");
    Preorder_n(t);
    release(t);
    return 0;
}

在上题中补充求二叉树中求结点总数算法(提示:可在某种遍历过程中统计遍历的结点数),并在主函数中补充相应的调用验证正确性。
算法代码:

 PreOrder_num(BiTree p){ 
       int j=0;        
             BiTree stack[MAX],q;
      int top=0,i;
      for(i=0;i<MAX;i++) stack[i]=NULL;
      q=p;
      while(q!=NULL){
            j++;
             if(q->rchild!=NULL) stack[top++]=q->rchild;
             if(q->lchild!=NULL) q=q->lchild;
             else
                     if(top>0) q=stack[--top];
                     else q=NULL;
      }
      return j; 
}

3、在上题中补充求二叉树中求叶子结点总数算法(提示:可在某种遍历过程中统计遍历的叶子结点数),并在主函数中补充相应的调用验证正确性。
算法代码

int LeafNodes(BiTree p){
     int num1,num2;
     if(p==NULL)
         return 0;
     else if(p->lchild==NULL&&p->rchild==NULL)
         return 1;
     else
     {
         num1=LeafNodes(p->lchild);
         num2=LeafNodes(p->rchild);
         return (num1+num2);
      }
}

4、在上题中补充求二叉树深度算法,并在主函数中补充相应的调用验证正确性。
算法代码:

int BTNodeDepth(BiTree p) {
 int lchilddep,rchilddep;
 if(p==NULL)
  return 0;
 else {
  lchilddep=BTNodeDepth(p->lchild);
  rchilddep=BTNodeDepth(p->rchild);
  return(lchilddep>rchilddep)?(lchilddep+1):(rchilddep+1);
 }
}
posted @ 2020-11-07 08:18  拥抱星星的月亮  阅读(58)  评论(0编辑  收藏  举报