【机器学习】感知机+线性回归+逻辑斯蒂回归+softmax回归

一、感知机

    1.模型和图像:

   

     2.数学定义推导和优化:

     

      

       

     3.流程

     

  4.参考资料

    https://blog.csdn.net/wodeai1235/article/details/54755735

二、线性回归

     1.定义及解析解:

    

       a=(XTX) -1 XTy,如加2范数约束则解析解为a=(XTX+λI) -1 XTy

      2.总结:

        速度快,对异常值敏感。可以采用梯度下降法。

三、逻辑斯蒂回归

     1.sigmod

      见 https://www.cnblogs.com/EstherLjy/p/9343487.html

     2.概述:

      LR是一种二分类算法,直接对分类的可能性进行建模,无需事先假设数据分布,避免了假设不准确带来的问题。不仅能预测出类别,还能预测出该类别的概率。是一种针对线性可分问题的性能优异的模型。LR回归是在线性回归模型的基础上,使用函数,将线性模型的结果压缩到[0,1] 之间,使其拥有概率意义。

    3.推导:

     α=sigmod(α) 是预测值,y是gt

      

   

   

   L(w)的导数为∑(yi-αi)xi

   然后用梯度下降法求解。

   4.逻辑斯蒂回归和线性分类器对比

    y的取值范围不同,线性是正负无穷,逻辑斯蒂是0-1;

    逻辑斯蒂更符合实际,一般x很大或很小时对y影响不大,中间影响很大。

    线性回归是根据样本X各个维度的Xi的线性叠加得到预测值的Y,然后最小化所有的样本预测值Y与真实值y'的误差来求得模型参数,是线性的。在logistic回归中,X各维度叠加和与Y不是线性关系,而是logistic关系。

四、softmax回归

   1.概述:

   是对LR在多分类上的一种扩展,损失函数为:

  

      LR的损失为:

    

   2.适用情况:

   softmax与LR的one VS all并不完全相同,区别在于加起来是否等于1.

   使用softmax:k个类是互斥的。

   使用n个二分类的LR:k个类不互斥。

   3.参考:

    https://blog.csdn.net/zhangliyao22/article/details/48379291

    https://www.cnblogs.com/lianyingteng/p/7784158.html

  

posted @   我若成风者  阅读(970)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示