FFT Cheetsheet

参考资料 https://oi.men.ci/fft-notes/

单位根(此类群均可)

\(ω^0, ω^1, \dots, ω^{n-1}互不相同\)

\(ω^k_n=ω^{2k}_{2n}\)

\(ω^{k+n/2}_n = ω^{-k}_n\)

\(ω_n^n=ω_n^0=1\)

DFT

\[A =(a_0, a_1,\cdots, a_{n-1})\\ A(x)=a_0+a_1x+a_2x^2+\cdots+a_{n-1}x^{n-1}\\ A' = DFT(A) = (A(ω_n^0), \cdots, A(ω_n^{n-1}))\\ A'是A的DFT. \]

\[ \begin{align*} A_0(x) &= a_0 + a_2 x + a_4 x ^ 2 + \dots + a_{n - 2} x ^ {\frac{n}{2} - 1} \\ A_1(x) &= a_1 + a_3 x + a_5 x ^ 2 + \dots + a_{n - 1} x ^ {\frac{n}{2} - 1} \end{align*} \\ .\\ 有A(ω_n^k) = A_0(ω^k_{n/2})+ω_n^kA_1(ω^k_{n/2}), k\in [0, n/2) \\A(ω_n^k) = A_0(ω^k_{n/2})-ω_n^kA_1(ω^k_{n/2}), k\in [n/2, n) \]

IDFT

\[A =(a_0, a_1,\cdots, a_{n-1})\\ A(x)=a_0+a_1x+a_2x^2+\cdots+a_{n-1}x^{n-1}\\ A' = IDFT(A) = (A(ω_n^0)/n,A(\omega_n^{-1})/n, \cdots, A(ω_n^{-(n-1)})/n)\\ A'是A的IDFT. \]

蝶形变换

(00, 01, 10, 11)

先按奇偶性分类

(00, 10), (01, 11)

不考虑末位之后,开始最初奇偶性分类过程

(0,1),(0,1)

所以反转二进制位,按反转后顺序操作。

posted @ 2019-03-07 18:43  懿路智行  阅读(126)  评论(0编辑  收藏  举报