mongodb MapReduce

MapReduce 命令

以下是MapReduce的基本语法:

>db.collection.mapReduce(
   function() {emit(key,value);},  //map 函数
   function(key,values) {return reduceFunction},   //reduce 函数
   {
      out: collection,
      query: document,
      sort: document,
      limit: number
   }
)

使用 MapReduce 要实现两个函数 Map 函数和 Reduce 函数,Map 函数调用 emit(key, value), 遍历 collection 中所有的记录, 将key与 value 传递给 Reduce 函数进行处理。

Map 函数必须调用 emit(key, value) 返回键值对。

参数说明:

  • map :映射函数 (生成键值对序列,作为 reduce 函数参数)。
  • reduce :(规约)统计函数,reduce函数的任务就是将key-values变成key-value,也就是把values数组变成一个单一的值value。
  • out :统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)。
  • query :一个筛选条件,只有满足条件的文档才会调用map函数。(query,limit,sort可以随意组合)
  • sort :和limit结合的sort排序参数(也是在发往map函数前给文档排序),可以优化分组机制
  • limit :执行map函数之前,限定文档数量的上限(要是没有limit,单独使用sort的用处不大)

MR示例

现有集合 orders 内容如下

db.orders.insert([
{
     _id: 1,
     cust_id: "marong",
     ord_date: new Date("Oct 04, 2012"),
     status: 'A',
     items: [ { sku: "mmm", qty: 5, price: 2.5 },
              { sku: "nnn", qty: 5, price: 2.5 } ]
},
{
     _id: 2,
     cust_id: "marong",
     ord_date: new Date("Oct 05, 2012"),
     status: 'B',
     items: [ { sku: "mmm", qty: 5, price: 3 },
              { sku: "nnn", qty: 5, price: 3 } ]
}
])

计算每个客户的总消费

执行过程:

1. 执行 map 操作过程

  • 定义 map (映射) 函数来处理每个文档:
  • 映射每个文档的cust_id, 并处理 items
  • 先遍历 items,分别对每个items成员 qtyprice相乘再求总和
var mapFunction2 = function() {
                       var key = this.cust_id;
                       var value = 0;
                       for (var idx = 0; idx < this.items.length; idx++) {
                            value += this.items[idx].qty * this.items[idx].price;
                       }
                       emit(key, value);
                    };

2. 定义reduce 函数有两个参数 keyCustId 和 valuesPrices

  • valuesPrices 是数组,由 keyCustId 分组, 收集 value 而来
  • reduces 函数 对 valuesPrices 数组 求和.
var reduceFunction2 = function(keyCustId, valuesPrices) {
                     return Array.sum(valuesPrices);
                  };

3. 执行 map-reduce 函数

db.orders.mapReduce(
                     mapFunction2,
                     reduceFunction2,
                     { out: "map_reduce_example" }
                   )
posted @ 2017-07-27 17:10  Erick-LONG  阅读(182)  评论(0编辑  收藏  举报