python 二叉堆

  • BinaryHeap() 创建一个新的,空的二叉堆。
  • insert(k) 向堆添加一个新项。
  • findMin() 返回具有最小键值的项,并将项留在堆中。
  • delMin() 返回具有最小键值的项,从堆中删除该项。
  • 如果堆是空的,isEmpty() 返回 true,否则返回 false。
  • size() 返回堆中的项数。
  • buildHeap(list) 从键列表构建一个新的堆。
from pythonds.trees.binheap import BinHeap

bh = BinHeap()
bh.insert(5)
bh.insert(7)
bh.insert(3)
bh.insert(11)

print(bh.delMin())

print(bh.delMin())

print(bh.delMin())

print(bh.delMin())
class BinHeap:
    def __init__(self):
        self.heapList = [0]
        self.currentSize = 0


    def percUp(self,i):
        while i // 2 > 0:
          if self.heapList[i] < self.heapList[i // 2]:
             tmp = self.heapList[i // 2]
             self.heapList[i // 2] = self.heapList[i]
             self.heapList[i] = tmp
          i = i // 2

    def insert(self,k):
      self.heapList.append(k)
      self.currentSize = self.currentSize + 1
      self.percUp(self.currentSize)

    def percDown(self,i):
      while (i * 2) <= self.currentSize:
          mc = self.minChild(i)
          if self.heapList[i] > self.heapList[mc]:
              tmp = self.heapList[i]
              self.heapList[i] = self.heapList[mc]
              self.heapList[mc] = tmp
          i = mc

    def minChild(self,i):
      if i * 2 + 1 > self.currentSize:
          return i * 2
      else:
          if self.heapList[i*2] < self.heapList[i*2+1]:
              return i * 2
          else:
              return i * 2 + 1

    def delMin(self):
      retval = self.heapList[1]
      self.heapList[1] = self.heapList[self.currentSize]
      self.currentSize = self.currentSize - 1
      self.heapList.pop()
      self.percDown(1)
      return retval

    def buildHeap(self,alist):
      i = len(alist) // 2
      self.currentSize = len(alist)
      self.heapList = [0] + alist[:]
      while (i > 0):
          self.percDown(i)
          i = i - 1

bh = BinHeap()
bh.buildHeap([9,5,6,2,3])

print(bh.delMin())
print(bh.delMin())
print(bh.delMin())
print(bh.delMin())
print(bh.delMin())

 

posted @ 2017-07-24 11:44  Erick-LONG  阅读(896)  评论(0编辑  收藏  举报