动态规划dp-01背包问题

核心套路

image

优化一般就是优化状态转移方程

01背包

特点:每个物品仅能使用一次
重要变量&公式解释
f[i][j]:表示所有选法集合中,只从前i个物品中选,并且总体积≤j的选法的集合,它的值是这个集合中每一个选法的最大值.

状态转移方程
f[i][j] = max(f[i-1][j], f[i-1][j-v[i]]+w[i])
f[i-1][j]:不选第i个物品的集合中的最大值
f[i-1][j-v[i]]+w[i]:选第i个物品的集合,但是直接求不容易求所在集合的属性,这里迂回打击一下,先将第i个物品的体积减去,求剩下集合中选法的最大值.

问题

集合如何划分

  • 一般原则:不重不漏,不重不一定都要满足(一般求个数时要满足)
  • 如何将现有的集合划分为更小的子集,使得所有子集都可以计算出来.
//无优化版
#include <iostream>

using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main() {
    cin >> n >> m;
    for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    for(int i = 1; i <= n; i++) {
        for(int j = 0; j <= m; j++) {
            f[i][j] = f[i-1][j];
            if(j>=v[i]) f[i][j] = max(f[i][j], f[i-1][j-v[i]]+w[i]);
        }
    }

    cout << f[n][m] << endl;
 return 0;    
}

//有优化版
/*
1. f[i] 仅用到了f[i-1]层, 
2. j与j-v[i] 均小于j
3.若用到上一层的状态时,从大到小枚举, 反之从小到大哦
*/
#include <iostream>

using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N];

int main() {
    cin >> n >> m;
    for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    for(int i = 1; i <= n; i++) 
        for(int j = m; j >= v[i]; j--) 
            f[j] = max(f[j], f[j-v[i]]+w[i]);
    cout << f[m] << endl;
 return 0;    
}
posted @   Eric`  阅读(6)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 在鹅厂做java开发是什么体验
· 百万级群聊的设计实践
· WPF到Web的无缝过渡:英雄联盟客户端的OpenSilver迁移实战
· 永远不要相信用户的输入:从 SQL 注入攻防看输入验证的重要性
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
点击右上角即可分享
微信分享提示