POJ1019——Number Sequence(大数处理)
Number Sequence
Description
A single positive integer i is given. Write a program to find the digit located in the position i in the sequence of number groups S1S2...Sk. Each group Sk consists of a sequence of positive integer numbers ranging from 1 to k, written one after another.
For example, the first 80 digits of the sequence are as follows:
11212312341234512345612345671234567812345678912345678910123456789101112345678910
Input
The first line of the input file contains a single integer t (1 ≤ t ≤ 10), the number of test cases, followed by one line for each test case. The line for a test case contains the single integer i (1 ≤ i ≤ 2147483647)
Output
There should be one output line per test case containing the digit located in the position i.
Sample Input
2
8
3
Sample Output
2
2
题目大意:
给定一个字符串,构成如下:
1121231234...123456789101112...12345678910111213..N
问字符串的第i位是多少。
解题思路:
将字符串划分成N段。
1 12 123 1234 ... 1234567891011 ... 123456789101112....N
那么对于第K段的长度len[k]=len[k-1]+K这个数字的长度。即len[k]=len[k-1]+log10(k)+1。
再定义sum[k]=sum[k-1]+len[k]。通过比较sum[]与i的大小即可定位到i所在的字段。
假设i在第k个字段(1234567...t....k)中,那么i-sum[k-1]表示的就是i在第k个字段中的位置。
再通过公式log10(j)+1就能判断出i所在的t和在t中的位置pos。
ans=t/pow(10,pos)%10。
Code:
1 /************************************************************************* 2 > File Name: poj1019.cpp 3 > Author: Enumz 4 > Mail: 369372123@qq.com 5 > Created Time: 2014年11月08日 星期六 02时33分13秒 6 ************************************************************************/ 7 8 #include<iostream> 9 #include<cstdio> 10 #include<cstdlib> 11 #include<string> 12 #include<cstring> 13 #include<list> 14 #include<queue> 15 #include<stack> 16 #include<map> 17 #include<set> 18 #include<algorithm> 19 #include<cmath> 20 #include<bitset> 21 #include<climits> 22 #define MAXN 40000 23 using namespace std; 24 long long len[MAXN],sum[MAXN]; 25 void init() 26 { 27 for (int i=1;i<MAXN;i++) 28 { 29 len[i]=len[i-1]+(int)log10((double)i)+1; 30 sum[i]=sum[i-1]+len[i]; 31 } 32 } 33 int solve(int N) 34 { 35 int i=1; 36 while (sum[i]<N) 37 i++; 38 N-=sum[i-1]; 39 int len_k=0,t; 40 for(t=1;len_k<N;t++) 41 len_k+=(int)log10((double)t)+1; 42 int pos=len_k-N; 43 return (t-1)/(int)pow((double)10,pos)%10; 44 } 45 int main() 46 { 47 int T; 48 cin>>T; 49 int N; 50 init(); 51 while (T--) 52 { 53 cin>>N; 54 cout<<solve(N)<<endl; 55 } 56 return 0; 57 }