Luogu 3412 仓鼠找sugar II

你也许说得对,但我是真看不懂第一篇题解那个答案式子……

预处理是差不多的。

\(f_u\) 表示从 \(u\to fa(u)\) 的期望步数,\(g_u\)\(fa(u)\to u\) 的期望步数,\(d_u\)\(u\) 的度数。

那么显然有:

\[f_u=\frac{1}{d_u}\left(1+\sum\limits_{v\in son(u)}(1+f_v+f_u)\right) \]

移项后得到 \(f_u=d_u+\sum\limits_{v\in son(u)}{f_v}\)

\(g_u\) 的话要分两类:

  • \(fa(u)\neq \text{root}\)

\[g_u=\frac{1}{d_{fa(u)}}\left(1+(1+g_{fa(u)}+g_u)+\sum\limits_{v\in son(fa(u))\setminus \{u\}}(1+f_v+g_u)\right) \]

  • \(fa(u)=\text{root}\)

\[g_u=\frac{1}{d_{fa(u)}}\left(1+\sum\limits_{v\in son(fa(u))\setminus\{u\}}(1+f_v+g_u)\right) \]

由于 \(g_{\text{root}}=0\),移项后均能得到 \(g_{u}=f_{fa(u)}+g_{fa(u)}-f_u\)

然后就可以预处理出 \(f,g\) 了。

考虑所有路径 \(u\to v\),统计从 \(u\) 走到 \(v\) 的期望步数,再除去 \(n^2\)。一条 \(u\to v\) 的路径,将其贡献与 \(v\to u\) 的路径合并。记一条边 \(e:(u, fa(u))\) 的权值为 \(w_e=f_u+g_u\)\(\text{lca}(u,v)\)\(k\),就变成了经典问题。注意到:

\[\begin{aligned}&\sum\limits_{(u,v)}\left(\sum\limits_{p\in [u\to k]\setminus \{k\}}f_p+\sum\limits_{p\in [k\to v]\setminus \{k\}}g_p\right)\\=&\sum\limits_{u,v(\text{无序})}\left(\sum\limits_{p\in [u\to v]}(f_p+g_p)-f_k-g_k\right)\\=&\sum\limits_{e:(u, fa(u))}w_esz_u\left(n-sz_u\right)\end{aligned} \]

\(2\) 步为考虑每条边对答案的贡献,即为穿过这条边的路径条数。

然后就很好做了。复杂度 \(O(n)\)

#include <bits/stdc++.h>
#define int long long
using namespace std;

namespace vbzIO {
	char ibuf[(1 << 20) + 1], *iS, *iT;
	#if ONLINE_JUDGE
	#define gh() (iS == iT ? iT = (iS = ibuf) + fread(ibuf, 1, (1 << 20) + 1, stdin), (iS == iT ? EOF : *iS++) : *iS++)
	#else
	#define gh() getchar()
	#endif
	#define rd read
	#define wr write
	#define pc putchar
	#define pi pair<int, int>
	#define mp make_pair
	#define fi first
	#define se second
	#define pb push_back
	#define ins insert
	#define era erase
	inline int read () {
		char ch = gh();
		int x = 0;
		bool t = 0;
		while (ch < '0' || ch > '9') t |= ch == '-', ch = gh();
		while (ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + (ch ^ 48), ch = gh();
		return t ? ~(x - 1) : x;
	}
	inline void write(int x) {
		if (x < 0) {
			x = ~(x - 1);
			putchar('-');
		}
		if (x > 9)
			write(x / 10);
		putchar(x % 10 + '0');
	}
}
using vbzIO::read;
using vbzIO::write;

const int N = 1e5 + 100;
const int mod = 998244353;
int n, ans, sz[N], f[N], g[N], d[N];
vector<int> t[N];

int qpow(int p, int q) {
    int res = 1;
    while (q) {
        if (q & 1) res = 1ll * res * p % mod;
        p = p * p % mod, q >>= 1;
    }
    return res;
}

void dfs1(int u, int fa) {
    sz[u] = 1, f[u] = d[u];
    for (int v : t[u]) {
        if (v == fa) continue;
        dfs1(v, u), f[u] += f[v], sz[u] += sz[v];
    }
}

void dfs2(int u, int fa) {
    if (u != 1) g[u] = f[fa] - f[u] + g[fa];
    for (int v : t[u]) {
        if (v == fa) continue;
        dfs2(v, u);
    }
    if (u != 1) (ans += 1ll * (f[u] + g[u]) * sz[u] % mod * (n - sz[u]) % mod) %= mod;
}

signed main() {
    n = rd();
    for (int i = 1, u, v; i <= n - 1; i++) {
        u = rd(), v = rd(), d[u]++, d[v]++;
        t[u].pb(v), t[v].pb(u);
    }
    dfs1(1, 0);
    dfs2(1, 0);
    wr(1ll * ans * qpow(1ll * n * n % mod, mod - 2) % mod);
	return 0;
}
posted @ 2023-07-20 18:22  Ender_32k  阅读(6)  评论(0编辑  收藏  举报