博客园 首页 私信博主 显示目录 隐藏目录 管理 动画

GMA Round 1 数列与方程

传送门

 

 

数列与方程

  首项为1,各项均大于0的数列{$a_n$}的前n项和$S_n$满足对于任意正整数n:$S_{n+1}^2-2*S_{n+1}*S_{n}-\sqrt{2}*S_n-1=0$,求$a_{30}$的值,保留3位小数。

 

 

  由$S_{n+1}^2-2S_{n+1}S_{n}-\sqrt{2}S_n-1=0$,$S_{n+1}=a_{n+1}+S_n$可得$a_{n+1}^2=S_n^2+\sqrt{2}S_n+1=S_n^2+1-2*S_n*cos\frac{3\pi}{4}$。

  因此,可以构成边长为$a_{n+1}$,$S_n$,1的三角形,$S_n$与1的夹角为$\frac{3\pi}{4}$。得$\frac{a_{n+1}}{sin\frac{3\pi}{4}}=\frac{1}{sin\theta}$,当斜边为$a_{n+1}$时,$\theta=(\frac{1}{2})^{n-1}*\frac{\pi}{2^{n+2}}$。于是$a_n=\frac{\sqrt{2}}{2*sin\frac{\pi}{2^{n+1}}}$

  定位:中等偏困难题

posted @ 2018-02-27 14:20  swm_sxt  阅读(227)  评论(0编辑  收藏  举报